An efficient quantum light–matter interface with sub-second lifetime

An efficient light–matter interface for quantum repeaters is developed. By placing Rb atoms optically confined in a 3D lattice in a ring cavity, an initial retrieval efficiency of 76% together with a 1/e lifetime of 0.22 s are achieved.

[1]  Yi-Hsin Chen,et al.  Coherent optical memory with high storage efficiency and large fractional delay. , 2012, Physical review letters.

[2]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[3]  T. M. Stace,et al.  Scalable quantum computing with atomic ensembles , 2008, 0804.0962.

[4]  Klaus Mølmer,et al.  Holographic quantum computing. , 2008, Physical review letters.

[5]  I Bloch,et al.  Electromagnetically induced transparency and light storage in an atomic Mott insulator. , 2009, Physical review letters.

[6]  Y. O. Dudin,et al.  Long-lived quantum memory , 2009 .

[7]  M. Fleischhauer,et al.  Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing , 2013, 1304.2264.

[8]  P. Lam,et al.  High efficiency coherent optical memory with warm rubidium vapour , 2010, Nature communications.

[9]  Y. O. Dudin,et al.  Light storage on the time scale of a minute , 2013 .

[10]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[11]  Jian-Wei Pan,et al.  Holographic storage of biphoton entanglement. , 2012, Physical review letters.

[12]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[13]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[14]  Nicolas Gisin,et al.  How far can one send a photon? , 2015, 1508.00351.

[15]  Jonathan Simon,et al.  Interfacing collective atomic excitations and single photons. , 2007, Physical review letters.

[16]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[17]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[18]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[19]  A. Kuzmich,et al.  Light storage in a magnetically dressed optical lattice , 2010, 1004.3727.

[20]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[21]  Christine Silberhorn,et al.  Characterization of the nonclassical nature of conditionally prepared single photons , 2005 .

[22]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[23]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[24]  Norbert Lütkenhaus,et al.  Ultrafast and fault-tolerant quantum communication across long distances. , 2013, Physical review letters.

[25]  N. Lundblad,et al.  Experimental observation of magic-wavelength behavior of {sup 87}Rb atoms in an optical lattice , 2010 .

[26]  H. de Riedmatten,et al.  A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band , 2014, Nature Communications.

[27]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[28]  Jian-Wei Pan,et al.  A millisecond quantum memory for scalable quantum networks , 2008, 0807.5064.

[29]  P. K. Lam,et al.  Unconditional room-temperature quantum memory , 2011, 1412.8235.

[30]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[31]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.