On Characteristic Area of Steiner Tree

We present a definition of characteristic area and inner spanning tree to accommodate the proof of Du and Hwang for Gilbert–Pollak conjecture on the Steiner ratio in the Euclidean plane.

[1]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[2]  S. Yau,et al.  Topology of three dimensional manifolds and the embedding problems in minimal surface theory , 1980 .

[3]  Henry O. Pollak,et al.  Some Remarks on the Steiner Problem , 1978, J. Comb. Theory A.

[4]  Ding-Zhu Du,et al.  A proof of the Gilbert-Pollak conjecture on the Steiner ratio , 1992, Algorithmica.

[5]  Y. Mashiko,et al.  The Steiner Ratio Conjecture of Gilbert-Pollak May Still Be Open , 2008, Algorithmica.

[6]  D. Du,et al.  The Steiner ratio conjecture of Gilbert and Pollak is true. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Doreen A. Thomas,et al.  A variational approach to the Steiner network problem , 1991, Ann. Oper. Res..

[8]  P. Widmayer,et al.  A simple proof of the Steiner ratio conjecture for five points , 1989 .

[9]  Fan Chung,et al.  A Lower Bound for the Steiner Tree Problem , 1978 .

[10]  Ding-Zhu Du,et al.  A Short Proof of a Result of Pollak on Steiner Minimal Trees , 1982, J. Comb. Theory, Ser. A.

[11]  Ding-Zhu Du,et al.  A new bound for the steiner ratio , 1983 .

[12]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[13]  F. K. Hwang,et al.  The Steiner Ratio Conjecture Is True for Five Points , 1985, J. Comb. Theory A.

[14]  J. Hyam Rubinstein,et al.  The Steiner ratio conjecture for six points , 1991, J. Comb. Theory A.

[15]  Ding-Zhu Du,et al.  An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[16]  Ronald L. Graham,et al.  A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL TREES , 1985 .

[17]  R. S. Booth The steiner ratio for five points , 1991, Ann. Oper. Res..