Anomalous thermal confinement in ohmically heated tokamaks

A model is proposed for explaining the behaviour of the gross energy confinement time in ohmically heated tokamak plasmas. The analysis takes into account the effect of the anomalous thermal conductivity due to small scale turbulence and the effect of the macroscopic MHD behaviour which provides some constraints on the temperature profile. The results indicate that the thermal conductivity associated with the dissipative trapped-electron mode can account for Neo-Alcator scaling and the thermal conductivity associated with the ion temperature gradient mode can account for the saturation of the energy confinement time with density. Comparisons with experimental results show reasonable agreement.

[1]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[2]  R. Waltz,et al.  Tokamak transport code simulations with drift wave models , 1987 .

[3]  W. Tang Microinstability-based model for anomalous thermal confinement in tokamaks , 1986 .

[4]  P. Liewer Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport , 1985 .

[5]  H. Knoepfel,et al.  Heating in Toroidal Plasmas (Report on the 4th International Symposium, Rome, 21–28 March, 1984) , 1984 .

[6]  Brian Labombard,et al.  Energy confinement of high-density pellet-fueled plasmas in the Alcator C tokamak , 1984 .

[7]  R. Goldston Energy confinement scaling in Tokamaks: some implications of recent experiments with Ohmic and strong auxiliary heating , 1984 .

[8]  W. Tang,et al.  Ion-temperature-gradient instability in toroidal plasmas , 1983 .

[9]  J. Hugill Transport in tokamaks – a review of experiment , 1983 .

[10]  R. Waltz,et al.  Determination of electron and ion thermal conductivities by analysis of Alcator‐A profile data , 1983 .

[11]  T. Petrie,et al.  Scaling of energy confinement with minor radius, current and density in Doublet III Ohmically heated plasmas , 1982 .

[12]  F. Hinton,et al.  Effect of finite aspect ratio on the neoclassical ion thermal conductivity in the banana regime , 1982 .

[13]  J. Wesson,et al.  Transport, instability and disruptions in tokamaks , 1982 .

[14]  F. Crisanti,et al.  Energy confinement at high density in the FT tokamak , 1982, Nuclear Fusion.

[15]  Liu Chen,et al.  Drift‐wave eigenmodes in toroidal plasmas , 1980 .

[16]  Equipe Tfr Tokamak scaling laws, with special emphasis on TFR experimental results , 1980 .

[17]  T. Hellsten Plasma physics and controlled nuclear fusion research 1978: vols. I and II, 7th Conf. Proc. Innsbruck, 23–30 August 1978, Nuclear Fusion, suppl. 1979 (IAEA, Vienna, 1979) vol. 1 pp. 828, Austrian Schillings 1160.-; vol. 2 pp. 671, Austrian Schillings 970.-. , 1979 .

[18]  R. V. Neidigh,et al.  Plasma confinement studies in the ISX-A tokamak , 1979 .

[19]  R. E. Waltz,et al.  Empirical scaling laws for energy confinement in Ohmically-heated tokamaks , 1979 .

[20]  G. Rewoldt,et al.  Integral formulation for the two‐dimensional spatial structure of drift and trapped‐electron modes , 1978 .

[21]  W. Tang Microinstability theory in tokamaks , 1978 .

[22]  T. Hellsten Plasma physics and controlled nuclear fusion research 1976 , 1977 .

[23]  R. R. Parker,et al.  High-density discharges in the Alcator tokamak , 1977 .

[24]  P. H. Rutherford,et al.  A computer model of radial transport in tokamaks , 1977 .

[25]  B. V. Waddell,et al.  Saturation of the tearing mode , 1976 .

[26]  D. R. Cohn,et al.  Reply to “Comments on the paper ‘Characteristics of high-density tokamak ignition reactors’” , 1976 .

[27]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[28]  Boris B. Kadomtsev,et al.  Trapped particles in toroidal magnetic systems , 1971 .