Rigidity and flexibility in the tetrasaccharide linker of proteoglycans from atomic‐resolution molecular simulation

Proteoglycans (PGs) are covalent conjugates between protein and carbohydrate (glycosaminoglycans). Certain classes of glycosaminoglycans such as chondroitin sulfate/dermatan sulfate and heparan sulfate utilize a specific tetrasaccharide linker for attachment to the protein component: GlcAβ1‐3Galβ1‐3Galβ1‐4Xylβ1‐O‐Ser. Toward understanding the conformational preferences of this linker, the present work used all‐atom explicit‐solvent molecular dynamics (MD) simulations combined with Adaptive Biasing Force (ABF) sampling to determine high‐resolution, high‐precision conformational free energy maps ΔG(φ, ψ) for each glycosidic linkage between constituent disaccharides, including the variant where GlcA is substituted with IdoA. These linkages are characterized by single, predominant (> 97% occupancy), and broad (45° × 60° for ΔG(φ, ψ) < 1 kcal/mol) free‐energy minima, while the Xyl‐Ser linkage has two such minima similar in free‐energy, and additional flexibility from the Ser sidechain dihedral. Conformational analysis of microsecond‐scale standard MD on the complete tetrasaccharide‐O‐Ser conjugate is consistent with ABF data, suggesting (φ, ψ) probabilities are independent of the linker context, and that the tetrasaccharide acts as a relatively rigid unit whereas significant conformational heterogeneity exists with respect to rotation about bonds connecting Xyl to Ser. © 2017 Wiley Periodicals, Inc.

[1]  A. Oldberg,et al.  Biosynthesis of the proteoglycan decorin--transient 2-phosphorylation of xylose during formation of the trisaccharide linkage region. , 1997, European journal of biochemistry.

[2]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[3]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. , 2012, Journal of chemical theory and computation.

[4]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  Olgun Guvench,et al.  Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides. , 2015, The journal of physical chemistry. B.

[7]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[8]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[9]  H. Kitagawa,et al.  2-O-Phosphorylation of Xylose and 6-O-Sulfation of Galactose in the Protein Linkage Region of Glycosaminoglycans Influence the Glucuronyltransferase-I Activity Involved in the Linkage Region Synthesis* , 2008, Journal of Biological Chemistry.

[10]  Jaap Heringa,et al.  Protein secondary structure prediction. , 2010, Methods in molecular biology.

[11]  Alexander D. MacKerell,et al.  Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator , 2014, The journal of physical chemistry. B.

[12]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[13]  C. Chipot,et al.  Overcoming free energy barriers using unconstrained molecular dynamics simulations. , 2004, The Journal of chemical physics.

[14]  B. Sattelle,et al.  Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale. , 2015, Biomacromolecules.

[15]  Lennart Nilsson,et al.  Rigidity versus flexibility: the dilemma of understanding protein thermal stability , 2015, The FEBS journal.

[16]  H. Kitagawa,et al.  Heparin and Heparan Sulfate Biosynthesis , 2002, IUBMB life.

[17]  Eric Darve,et al.  Calculating Free Energies Using a Scaled-Force Molecular Dynamics Algorithm , 2002 .

[18]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[19]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[20]  Sandeep Patel,et al.  Nonadditive empirical force fields for short-chain linear alcohols: methanol to butanol. Hydration free energetics and Kirkwood-Buff analysis using charge equilibration models. , 2010, The journal of physical chemistry. B.

[21]  Kamau Fahie,et al.  Molecular Functions of Glycoconjugates in Autophagy. , 2016, Journal of molecular biology.

[22]  N. Krishna,et al.  NMR and molecular modeling studies on two glycopeptides from the carbohydrate-protein linkage region of connective tissue proteoglycans. , 1999, Glycobiology.

[23]  Olgun Guvench,et al.  Peptide backbone sampling convergence with the adaptive biasing force algorithm. , 2013, The journal of physical chemistry. B.

[24]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[25]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[26]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[27]  Charles L. Brooks,et al.  Efficient implementation of constant pH molecular dynamics on modern graphics processors , 2016, J. Comput. Chem..

[28]  Eric Darve,et al.  Adaptive biasing force method for scalar and vector free energy calculations. , 2008, The Journal of chemical physics.

[29]  Christophe Chipot,et al.  Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables. , 2010, Journal of chemical theory and computation.

[30]  Charles L. Brooks,et al.  λ‐Dynamics free energy simulation methods , 2009, J. Comput. Chem..

[31]  P. de Waard,et al.  Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. II. Seven compounds containing 2 or 3 sulfate residues. , 1992, The Journal of biological chemistry.

[32]  J. Esko,et al.  Influence of core protein sequence on glycosaminoglycan assembly. , 1996, Current opinion in structural biology.

[33]  C. Brooks,et al.  Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling , 2005, Journal of biomolecular NMR.

[34]  P. de Waard,et al.  Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans of whale cartilage. , 1991, European journal of biochemistry.

[35]  A. Imberty,et al.  Conformational behavior of chondroitin and chondroitin sulfate in relation to their physical properties as inferred by molecular modeling , 2003, Biopolymers.

[36]  J. Dixon,et al.  Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis , 2014, Proceedings of the National Academy of Sciences.

[37]  T. Hardingham,et al.  Proteoglycans: many forms and many functions , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  Javad Shakeri,et al.  A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation , 2009, Carbohydrate research.

[39]  K. Kleesiek,et al.  Recognition of Acceptor Proteins by UDP-D-xylose Proteoglycan Core Protein β-D-Xylosyltransferase* , 1997, The Journal of Biological Chemistry.

[40]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[41]  J. Silbert,et al.  Biosynthesis of Chondroitin/Dermatan Sulfate , 2002, IUBMB life.

[42]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. , 2011, Journal of chemical theory and computation.

[43]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[44]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[45]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[46]  Gregory F Payne,et al.  pH-Responsive Self-Assembly of Polysaccharide through a Rugged Energy Landscape. , 2015, Journal of the American Chemical Society.

[47]  M. Bernfield,et al.  Structural Characterization of Heparan Sulfate and Chondroitin Sulfate of Syndecan-1 Purified from Normal Murine Mammary Gland Epithelial Cells , 2001, The Journal of Biological Chemistry.

[48]  Louis G. Birta,et al.  A parameter optimization module for CSSL-based simulation software , 1977 .

[49]  Eric Darve,et al.  Assessing the efficiency of free energy calculation methods. , 2004, The Journal of chemical physics.

[50]  T. Wight,et al.  Proteoglycans: Key Regulators of Pulmonary Inflammation and the Innate Immune Response to Lung Infection , 2010, Anatomical record.

[51]  M. Toda,et al.  In: Statistical physics II , 1985 .

[52]  K. Prydz,et al.  Synthesis and sorting of proteoglycans. , 2000, Journal of cell science.

[53]  L. Regan,et al.  Predicting the side‐chain dihedral angle distributions of nonpolar, aromatic, and polar amino acids using hard sphere models , 2014, Proteins.

[54]  H. Kitagawa,et al.  Identification of Phosphatase That Dephosphorylates Xylose in the Glycosaminoglycan-Protein Linkage Region of Proteoglycans* , 2014, The Journal of Biological Chemistry.

[55]  Andrew Almond,et al.  Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix. , 2006, Journal of molecular biology.

[56]  P. de Waard,et al.  Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. I. Six compounds containing 0 or 1 sulfate and/or phosphate residues. , 1992, The Journal of biological chemistry.

[57]  Ronald D. Hills,et al.  Mechanism of binding site conformational switching in the CD44-hyaluronan protein-carbohydrate binding interaction. , 2011, Journal of molecular biology.

[58]  Christophe Chipot,et al.  Exploring the free-energy landscape of a short peptide using an average force. , 2005, The Journal of chemical physics.

[59]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[60]  Christophe Chipot,et al.  The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask , 2014, The journal of physical chemistry. B.

[61]  S. Harvey,et al.  Nuclear magnetic resonance and molecular modeling studies on O-beta-D-galactopyranosyl-(1----4)-O-beta-D-xylopyranosyl-(1----0)-L-se rine, a carbohydrate-protein linkage region fragment from connective tissue proteoglycans. , 1990, The Journal of biological chemistry.

[62]  R. Schweitzer‐Stenner,et al.  Local Order in the Unfolded State: Conformational Biases and Nearest Neighbor Interactions , 2014, Biomolecules.

[63]  Timothy H. Click,et al.  Intrinsically Disordered Proteins in a Physics-Based World , 2010, International journal of molecular sciences.