IMAGES, SEPARATION OF SETS AND EXTREMUM PROBLEMS

[1]  József Kolumbán,et al.  On a generalized sup-inf problem , 1996 .

[2]  Tamás Rapcsák,et al.  On the connectedness of the solution set to linear complementarity systems , 1994 .

[3]  Joachim Gwinner,et al.  Theorems of the Alternative and Duality for INF-SUP Problems , 1994, Math. Oper. Res..

[4]  Massimo Pappalardo,et al.  Image space approach to penalty methods , 1990 .

[5]  Franco Giannessi,et al.  Theorems of the alternative for multifunctions with applications to optimization: General results , 1987 .

[6]  C Beoni,et al.  A generalization of Fenchel duality theory , 1986 .

[7]  F. Giannessi Theorems of the alternative and optimality conditions , 1984 .

[8]  A. D. Ioffe,et al.  Necessary Conditions in Nonsmooth Optimization , 1984, Math. Oper. Res..

[9]  H. Komiya,et al.  Perfect duality for convexlike programs , 1982 .

[10]  J. Gwinner,et al.  Closed images of convex multivalued mappings in linear topological spaces with applications , 1977 .

[11]  S. M. Robinson First Order Conditions for General Nonlinear Optimization , 1976 .

[12]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[13]  H. König Über das von Neumannsche Minimax-Theorem , 1968 .

[14]  M. Hestenes Calculus of variations and optimal control theory , 1966 .

[15]  T. Illés,et al.  Farkas type theorems for generalized convexities , 1994 .

[16]  Vaithilingam Jeyakumar,et al.  Convexlike alternative theorems and mathematical programming , 1985 .

[17]  Hubert Halkin,et al.  Necessary conditions for optimal control problems with differentiable or nondifferentiable data , 1978 .

[18]  L. McLinden,et al.  Duality theorems and theorems of the alternative , 1975 .