Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss‐Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer‐metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (Some figures may appear in colour only in the online journal)

[1]  Kevin M. Farinholt,et al.  Modeling of electromechanical charge sensing in ionic polymer transducers , 2004 .

[2]  Mohsen Shahinpoor,et al.  Mechanoelectric effects in ionic gels , 2000 .

[3]  H. Bleckmann Reception of hydrodynamic stimuli in aquatic and semiaquatic animals , 1994 .

[4]  Luigi Fortuna,et al.  A model for ionic polymer metal composites as sensors , 2006 .

[5]  K. Kim,et al.  Ionic polymer–metal composites: II. Manufacturing techniques , 2003 .

[6]  Isao Shimoyama,et al.  An air flow sensor modeled on wind receptor hairs of insects , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[7]  Douglas L. Jones,et al.  Artificial lateral line with biomimetic neuromasts to emulate fish sensing , 2010, Bioinspiration & biomimetics.

[8]  Xiaobo Tan,et al.  A nonlinear, control-oriented model for ionic polymer–metal composite actuators , 2009 .

[9]  Xiaobo Tan,et al.  Underwater source localization using an IPMC-based artificial lateral line , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  Xiaobo Tan,et al.  A dynamic model for ionic polymer–metal composite sensors , 2007 .

[11]  E. Jacobsen,et al.  The sliding DFT , 2003, IEEE Signal Process. Mag..

[12]  J. Leo van Hemmen,et al.  Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—A cybernetic approach , 2005, Biological Cybernetics.

[13]  L. Fortuna,et al.  A model of ionic polymer–metal composite actuators in underwater operations , 2008 .

[14]  C. Campenhausen,et al.  Detection of stationary objects by the blind Cave FishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[15]  Xiaobo Tan,et al.  A Control-Oriented and Physics-Based Model for Ionic Polymer--Metal Composite Actuators , 2008, IEEE/ASME Transactions on Mechatronics.

[16]  Douglas L. Jones,et al.  Distant touch hydrodynamic imaging with an artificial lateral line , 2006, Proceedings of the National Academy of Sciences.

[17]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[18]  Jeffrey H. Lang,et al.  Lateral-line inspired sensor arrays for navigation and object identification , 2011 .

[19]  Jelle Atema,et al.  The importance of the lateral line in nocturnal predation of piscivorous catfish , 2004, Journal of Experimental Biology.

[20]  Douglas L. Jones,et al.  Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors , 2006, EURASIP J. Adv. Signal Process..

[21]  M. Porfiri,et al.  Energy harvesting from base excitation of ionic polymer metal composites in fluid environments , 2009 .

[22]  Sietse M van Netten,et al.  Source location encoding in the fish lateral line canal , 2006, Journal of Experimental Biology.

[23]  J. Montgomery,et al.  The lateral line can mediate rheotaxis in fish , 1997, Nature.

[24]  S. Coombs,et al.  Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection , 2009 .

[25]  Shane P Windsor,et al.  Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus) , 2008, Journal of Experimental Biology.

[26]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[27]  Sheryl Coombs,et al.  Smart Skins: Information Processing by Lateral Line Flow Sensors , 2001, Auton. Robots.

[28]  Barbar J. Akle,et al.  High-strain ionomeric–ionic liquid electroactive actuators , 2006 .

[29]  Matteo Aureli,et al.  Nonlinear sensing of ionic polymer metal composites , 2013 .

[30]  Chang Liu,et al.  Micromachined biomimetic artificial haircell sensors , 2007, Bioinspiration & biomimetics.

[31]  Sheryl Coombs,et al.  Dipole source localization by mottled sculpin. I. Approach strategies , 1997, Journal of Comparative Physiology A.

[32]  S. Graziani,et al.  A Tactile Sensor for Biomedical Applications Based on IPMCs , 2008, IEEE Sensors Journal.

[33]  H. Bleckmann,et al.  Hydrodynamic stimuli and the fish lateral line , 2000, Nature.

[34]  J. Liao Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Kármán gait , 2004, Journal of Experimental Biology.

[35]  Sia Nemat-Nassera,et al.  Electromechanical response of ionic polymer-metal composites , 2000 .

[36]  R. Cingolani,et al.  Stress-driven AlN cantilever-based flow sensor for fish lateral line system , 2011 .

[37]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[38]  Lisa Mauck Weiland,et al.  Prediction of the ionic polymer transducer sensing of shear loading , 2011 .

[39]  N A Schellart,et al.  Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. , 1992, Journal of neurophysiology.

[40]  Xiaobo Tan,et al.  An Efficient, Time-of-Flight-Based Underwater Acoustic Ranging System for Small Robotic Fish , 2010, IEEE Journal of Oceanic Engineering.

[41]  Xiaobo Tan,et al.  Artificial lateral line-based localization of a dipole source with unknown vibration amplitude and direction , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[42]  Xiaobo Tan,et al.  Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation , 2010 .

[43]  Donald J. Leo,et al.  Linear Electromechanical Model of Ionic Polymer Transducers -Part I: Model Development , 2003 .

[44]  Donald J. Leo,et al.  Hair cell sensing with encapsulated interface bilayers , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[45]  W. Yim,et al.  An artificial muscle actuator for biomimetic underwater propulsors , 2007, Bioinspiration & biomimetics.

[46]  Xiaobo Tan,et al.  Microfabrication of IPMC cilia for bio-inspired flow sensing , 2012, Smart Structures.

[47]  Xiaobo Tan,et al.  Modeling and Inverse Compensation of Temperature-Dependent Ionic Polymer–Metal Composite Sensor Dynamics , 2011, IEEE/ASME Transactions on Mechatronics.

[48]  Kam K. Leang,et al.  A Twistable Ionic Polymer-Metal Composite Artificial Muscle for Marine Applications , 2011 .

[49]  Maarja Kruusmaa,et al.  Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows , 2012, Bioinspiration & biomimetics.

[50]  Lily D. Chambers,et al.  What information do Kármán streets offer to flow sensing? , 2011, Bioinspiration & biomimetics.

[51]  Maurizio Porfiri,et al.  Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites , 2010, IEEE/ASME Transactions on Mechatronics.

[52]  G. Zhu,et al.  Model-Based Estimation of Flow Characteristics Using an Ionic Polymer–Metal Composite Beam , 2013, IEEE/ASME Transactions on Mechatronics.

[53]  Xiaobo Tan,et al.  Autonomous robotic fish as mobile sensor platforms: Challenges and potential solutions , 2011 .

[54]  J. Janssen,et al.  Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan , 1985, Environmental Biology of Fishes.

[55]  M. McHenry,et al.  Mechanical filtering by the boundary layer and fluid–structure interaction in the superficial neuromast of the fish lateral line system , 2008, Journal of Comparative Physiology A.

[56]  Jack Chen,et al.  Design and fabrication of artificial lateral line flow sensors , 2002 .

[57]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[58]  H. Bleckmann,et al.  Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals , 2011, Beilstein journal of nanotechnology.

[59]  Gijsbertus J.M. Krijnen,et al.  Artificial sensory hairs based on the flow sensitive receptor hairs of crickets , 2005 .

[60]  S. Coombs,et al.  Diversity of Lateral Line Systems: Evolutionary and Functional Considerations , 1988 .

[61]  Kinji Asaka,et al.  Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  Zhi-Wei Luo,et al.  An analysis of the increase of bending response in IPMC dynamics given uniform input , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[63]  Xiaobo Tan,et al.  An artificial lateral line system using IPMC sensor arrays , 2012 .

[64]  Xiaobo Tan,et al.  Localization of source with unknown amplitude using IPMC sensor arrays , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[65]  Douglas L. Jones,et al.  Flow Vision for Autonomous Underwater Vehicles via an Artificial Lateral Line , 2011, EURASIP J. Adv. Signal Process..

[66]  Maurizio Podiri,et al.  Charge dynamics in ionic polymer metal composites , 2008 .

[67]  S. Coombs,et al.  Modeling and measuring lateral line excitation patterns to changing dipole source locations , 2004, Journal of Comparative Physiology A.

[68]  Xiaobo Tan,et al.  Dynamic modeling of robotic fish and its experimental validation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[69]  G. Krijnen,et al.  Dipole-source localization using biomimetic flow-sensor arrays positioned as lateral-line system , 2010 .