Decimations of languages and state complexity

Let the words of a language L be arranged in increasing radix order: L={w"0,w"1,w"2,...}. We consider transformations that extract terms from L in an arithmetic progression. For example, two such transformations are even(L)={w"0,w"2,w"4...} and odd(L)={w"1,w"3,w"5,...}. Lecomte and Rigo observed that if L is regular, then so are even(L), odd(L), and analogous transformations of L. We find good upper and lower bounds on the state complexity of this transformation. We also give an example of a context-free language L such that even(L) is not context-free.

[1]  Olivier Carton,et al.  Operations preserving regular languages , 2006, Theor. Comput. Sci..

[2]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[3]  Michel Rigo,et al.  Numeration Systems on a Regular Language , 1999, Theory of Computing Systems.

[4]  Jean Berstel,et al.  The Set of Minimal Words of a Context-Free Language is Context-Free , 1997, J. Comput. Syst. Sci..

[5]  Michel Rigo,et al.  Abstract numeration systems on bounded languages and multiplication by a constant , 2007, ArXiv.

[6]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[7]  Gheorghe Paun,et al.  Thin and Slender Languages , 1995, Discret. Appl. Math..

[8]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[9]  Lucian Ilie On a Conjecture about Slender Context-Free Languages , 1994, Theor. Comput. Sci..

[10]  Michel Rigo Generalization of automatic sequences for numeration systems on a regular language , 2000, Theor. Comput. Sci..

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Michel Rigo,et al.  Construction of regular languages and recognizability of polynomials , 1999, Discret. Math..

[13]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[14]  Lucian Ilie On lengths of words in context-free languages , 2000, Theor. Comput. Sci..

[15]  Jeffrey Shallit,et al.  Unary Language Operations, State Complexity and Jacobsthal's Function , 2002, Int. J. Found. Comput. Sci..