Can quantum theory be characterized in information-theoretic terms?

Does information play a significant role in the foundations of physics? We investigate whether information-theoretic constraints characterize quantum theory. In a C*-algebraic framework, this is known to hold via three equivalences: no broadcasting and noncommutativity; no bit commitment and nonlocality; no signalling and kinematic independence. But this complex linear framework could be said to build in quantum theory from the start. We show that the first two equivalences break, and the third holds, in a framework of generalized, possibly nonlinear, C*-algebras. This uncovers a hierarchy of notions of when (quantum) information is classical.

[1]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[2]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[3]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[4]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[5]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[6]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[7]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[8]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[9]  Stefano Gogioso,et al.  Mermin Non-Locality in Abstract Process Theories , 2015 .

[10]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[11]  M. Schlosshauer Elegance and Enigma , 2011 .

[12]  Sean Tull,et al.  Categories of relations as models of quantum theory , 2015, ArXiv.

[13]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[14]  Valentina S. Harizanov,et al.  Logic and algebraic structures in quantum computing , 2016 .

[15]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[16]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[17]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[18]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[19]  Robert W. Spekkens,et al.  Quantum Theory: Informational Foundations and Foils , 2015, 1805.11483.

[20]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[21]  Aleks Kissinger,et al.  Categorical Quantum Mechanics II: Classical-Quantum Interaction , 2016, 1605.08617.

[22]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[23]  Aleks Kissinger,et al.  Completely positive projections and biproducts , 2013, QPL.

[24]  R. Werner,et al.  A short impossibility proof of quantum bit commitment , 2009, 0905.3801.

[25]  Philipp A. Hoehn,et al.  Quantum theory from questions , 2015, 1511.01130.

[27]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[28]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.