Efficient NiO/F-TiO2 nanocomposites for 4-chlorophenol photodegradation.

[1]  S. El-Bahy,et al.  Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2 and Its Applications in Photodegradation and Hydrogen Evolution , 2021, ACS omega.

[2]  R. Luque,et al.  Caffeine photocatalytic degradation using composites of NiO/TiO2-F and CuO/TiO2-F under UV irradiation. , 2021, Chemosphere.

[3]  Ranjith G. Nair,et al.  Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport , 2021 .

[4]  S. Shivanna,et al.  Hydrothermal synthesis of MoO3/ZnO heterostructure with highly enhanced photocatalysis and their environmental interest , 2021 .

[5]  Claudia Patricia Castañeda Martínez,et al.  Photocatalytic degradation of the 2,4-dichlorophenoxyacetic acid herbicide using supported iridium materials , 2021 .

[6]  D. Solís,et al.  Effective photocatalytic degradation of Rhodamine B using tin semiconductors over hydrotalcite-type materials under sunlight driven , 2021, Catalysis Today.

[7]  R. Gómez,et al.  Effective phosphated CeO 2 materials in the photocatalytic degradation of phenol under UV irradiation , 2020 .

[8]  C. Jaramillo-Páez,et al.  Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment , 2020, Topics in Catalysis.

[9]  J. Murcia Visible active noble metals–structured photocatalysts for the removal of emerging contaminants , 2020 .

[10]  Jie Han,et al.  TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis. , 2019, Journal of colloid and interface science.

[11]  L. Palmisano,et al.  Determination of the crystallinity of TiO2 photocatalysts , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[12]  Jun Ke,et al.  Black NiO-TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism , 2018 .

[13]  M. Sánchez-Domínguez,et al.  Improved photocatalytic hydrogen production from methanol/water solution using CuO supported on fluorinated TiO2 , 2018 .

[14]  P. Ayyub,et al.  pn Heterojunctions in NiO:TiO2 composites with type-II band alignment assisting sunlight driven photocatalytic H2 generation , 2018 .

[15]  M. Xing,et al.  Mechanism of Photocatalysis , 2018 .

[16]  W. Jaegermann,et al.  Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. , 2017, Physical chemistry chemical physics : PCCP.

[17]  Hugo Alfonso Rojas-Sarmiento,et al.  Study of the visible light activity of Pt and Au-TiO2 photocatalysts in organic pollutants degradation , 2017 .

[18]  Yunfeng Zhu,et al.  Preparation of NiO/TiO2 p-n heterojunction composites and its photocathodic protection properties for 304 stainless steel under simulated solar light , 2017 .

[19]  Lixin Zhang,et al.  Preparation of anatase/TiO2(B) TiO2 nanosheet for high performance of photocatalytic reduction of CO2 , 2017, Journal of Materials Science: Materials in Electronics.

[20]  P. Zapata,et al.  FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol , 2017 .

[21]  R. Kamble,et al.  A Simple Approach on Synthesis of TiO2 Nanoparticles and its Application in dye Sensitized Solar Cells , 2017 .

[22]  Mietek Jaroniec,et al.  Heterojunction Photocatalysts , 2017, Advanced materials.

[23]  Lisong Xiao,et al.  Synthesis and visible-light-driven photocatalytic activity of p – n heterojunction Ag 2 O/NaTaO 3 nanocubes , 2016 .

[24]  R. Gómez,et al.  Photocatalytic degradation of phenol using MgAlSn hydrotalcite-like compounds , 2016 .

[25]  Shuangquan Zang,et al.  Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation. , 2016, Journal of hazardous materials.

[26]  R. Gómez,et al.  Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na2SO3 as reducing agent , 2016, Journal of Sol-Gel Science and Technology.

[27]  José Marcos Sasaki,et al.  The Scherrer equation and the dynamical theory of X-ray diffraction. , 2016, Acta crystallographica. Section A, Foundations and advances.

[28]  R. Pérez‐Hernández,et al.  Improved photocatalytic activity of SnO2–ZnAl LDH prepared by one step Sn4 + incorporation , 2016 .

[29]  Jiangong Li,et al.  A facile method for the structure control of TiO2 particles at low temperature , 2015 .

[30]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[31]  L. Pierella,et al.  TiO2 Supported on HZSM-11 Zeolite as Efficient Catalyst for the Photodegradation of Chlorobenzoic Acids , 2015 .

[32]  C. Velasco‐Santos,et al.  4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts , 2015, Journal of Environmental Health Science and Engineering.

[33]  Jie Zhang,et al.  Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types , 2014 .

[34]  S. Ibrahim,et al.  Preparation of Improved p-n Junction NiO/TiO2 Nanotubes for Solar-Energy-Driven Light Photocatalysis , 2013 .

[35]  Ibram Ganesh,et al.  Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications , 2012, TheScientificWorldJournal.

[36]  K. Lv,et al.  Cysteine modified anatase TiO2 hollow microspheres with enhanced visible-light-driven photocatalytic activity , 2012 .

[37]  M. Ksibi,et al.  Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: kinetics, intermediates, phytotoxicity and acute toxicity. , 2012, Journal of environmental sciences.

[38]  Y. Ku,et al.  Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution , 2011 .

[39]  P. Pramanik,et al.  Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis , 2011 .

[40]  F. Tzompantzi,et al.  Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides , 2011 .

[41]  H. Ohta,et al.  EXPERIMENTAL CHARACTERIZATION OF THE ELECTRONIC STRUCTURE OF ANATASE TIO2: THERMOPOWER MODULATION , 2010, 1009.0400.

[42]  Jiaguo Yu,et al.  Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment , 2009 .

[43]  Kesong Yang,et al.  Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2 , 2008 .

[44]  A. Neimark,et al.  Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation , 2002 .