Huygens-Fresnel-Kirchhoff wave-front diffraction formulation: spherical waves
暂无分享,去创建一个
[1] L. B. Felsen,et al. Gaussian beam analysis of propagation from an extended plane aperture distribution through dielectric layers. II. Circular cylindrical layer , 1990 .
[2] L. Felsen. Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation; Geometrical representation of the fundamental mode of a Gaussian beam in oblate spheroidal coordinates: comment , 1989 .
[3] L. B. Felsen,et al. Systematic study of fields due to extended apertures by Gaussian beam discretization , 1989 .
[4] Ehud Heyman,et al. Complex-source pulsed-beam fields , 1989 .
[5] Harrison H. Barrett,et al. New family of Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation , 1988, Annual Meeting Optical Society of America.
[6] A. F. Behof,et al. Optical diffraction pattern measurements using a self-scanning photodiode array interfaced to a microcomputer , 1987 .
[7] L. Felsen,et al. Complex rays for radiation from discretized aperture distributions , 1987 .
[8] L. Felsen,et al. Propagating pulsed beam solutions by complex source parameter substitution , 1986 .
[9] L. Felsen,et al. Reflection and transmission of beams at a curved interface , 1986 .
[10] Leopold B. Felsen,et al. Real spectra, complex spectra, compact spectra , 1986 .
[11] L. Felsen,et al. Evaluation of beam fields reflected at a plane interface , 1985 .
[12] L. Felsen,et al. Complex ray analysis of beam transmission through two-dimensional radomes , 1985 .
[13] Y. Kathuria. Fresnel and far-field diffraction due to an elliptical aperture , 1985 .
[14] L. Felsen. Novel ways for tracking rays , 1985 .
[15] D. Burch. Fresnel diffraction by a circular aperture , 1985 .
[16] L. Felsen. Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams , 1984 .
[17] J. Hudson. Fresnel-Kirchhoff diffraction in optical systems: an approximate computational algorithm. , 1984, Applied optics.
[18] L. Felsen,et al. Complex ray analysis of radiation from large apertures with tapered illumination , 1984 .
[19] L. Felsen,et al. Evanescent waves and complex rays , 1982 .
[20] F. Hasselmann,et al. Asymptotic analysis of parabolic reflector antennas , 1982 .
[21] A. Papoulis. Linear systems, Fourier transforms, and optics , 1981, Proceedings of the IEEE.
[22] James E. Harvey,et al. Fourier treatment of near‐field scalar diffraction theory , 1979 .
[23] L. Felsen,et al. Multiply Reflected Gaussian Beams in a Circular Cross Section , 1978 .
[24] F. Feiock,et al. Wave propagation in optical systems with large apertures , 1978 .
[25] A. Erteza,et al. Contemporary optics for scientists and engineers , 1977, Proceedings of the IEEE.
[26] Sang-Yung Shin,et al. LATERAL SHIFTS OF TOTALLY REFLECTED GAUSSIAN BEAMS , 1977 .
[27] L. Felsen,et al. Gaussian beam modes by multipoles with complex source points , 1977 .
[28] James S. Marsh,et al. Diffraction patterns of simple apertures , 1974 .
[29] A. J. Campillo,et al. Fresnel diffraction effects in the design of high‐power laser systems , 1973 .
[30] J. Goodman. Introduction to Fourier optics , 1969 .
[31] F. Harris. Light Diffraction Patterns , 1964 .
[32] E. W. Marchand,et al. Comparison of the Kirchhoff and the Rayleigh–Sommerfeld Theories of Diffraction at an Aperture , 1964 .
[33] H. Kraus,et al. Huygens–Fresnel–Kirchhoff wave-front diffraction formulation: paraxial and exact Gaussian laser beams , 1990 .
[34] Barbara T. Landesman,et al. Geometrical representation of the fundamental mode of a Gaussian beam in oblate spheroidal coordinates , 1989 .
[35] William H. Southwell,et al. Validity of the Fresnel approximation in the near field , 1981 .
[36] L. B. Felsen,et al. Evanescent Waves , 1976 .
[37] E. T. Copson,et al. The mathematical theory of Huygens' principle , 1939 .