Maximum Weight Independent Sets in ( S_1, 1, 3 , bull)-free Graphs

The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The MWIS problem is well known to be NP-complete in general, even under substantial restrictions. The computational complexity of the MWIS problem for \(S_{1, 1, 3}\)-free graphs is unknown. In this note, we give a proof for the solvability of the MWIS problem for (\(S_{1, 1, 3}\), bull)-free graphs in polynomial time. Here, an \(S_{1, 1, 3}\) is the graph with vertices \(v_1, v_2, v_3, v_4, v_5, v_6\) and edges \(v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_4v_6\), and the bull is the graph with vertices \(v_1, v_2, v_3, v_4, v_5\) and edges \(v_1v_2, \) \( v_2v_3, v_3v_4, \) \( v_2v_5, v_3v_5\).

[1]  Maria Chudnovsky,et al.  The structure of bull-free graphs I - Three-edge-paths with centers and anticenters , 2012, J. Comb. Theory, Ser. B.

[2]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory, Ser. B.

[3]  Vadim V. Lozin,et al.  On the maximum independent set problem in subclasses of subcubic graphs , 2013, J. Discrete Algorithms.

[4]  Martin Milanič,et al.  A polynomial algorithm to find an independent set of maximum weight in a fork-free graph , 2006, SODA '06.

[5]  Vadim V. Lozin,et al.  Graphs Without Large Apples and the Maximum Weight Independent Set Problem , 2014, Graphs Comb..

[6]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[7]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[8]  Bruce Reed,et al.  Recognizing bull-free perfect graphs , 1995, Graphs Comb..

[9]  Maria Chudnovsky,et al.  The structure of bull-free graphs II and III - A summary , 2012, J. Comb. Theory, Ser. B.

[10]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[11]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[12]  T. Karthick,et al.  Weighted independent sets in a subclass of P6-free graphs , 2015, Discret. Math..

[13]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[14]  Vassilis Giakoumakis,et al.  Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences , 2011, Discret. Appl. Math..

[15]  Daniel Lokshtanov,et al.  Independent Set in P5-Free Graphs in Polynomial Time , 2014, SODA.

[16]  Ingo Schiermeyer,et al.  The Maximum Independent Set Problem in Subclasses of Subcubic Graphs , 2015, Discret. Math..

[17]  Martin Farber,et al.  On diameters and radii of bridged graphs , 1989, Discret. Math..

[18]  Andreas Brandstädt,et al.  Weighted efficient domination in two subclasses of P6-free graphs , 2016, Discret. Appl. Math..

[19]  Vadim V. Lozin,et al.  Stable sets in two subclasses of banner-free graphs , 2003, Discret. Appl. Math..

[20]  Manu Basavaraju,et al.  Maximum weight independent sets in hole- and dart-free graphs , 2012, Discret. Appl. Math..

[21]  Vadim V. Lozin,et al.  The Maximum Independent Set Problem in Planar Graphs , 2008, MFCS.

[22]  Frédéric Maffray,et al.  The Maximum Weight Stable Set Problem in ( P_6 , bull)-Free Graphs , 2016, WG.

[23]  Vadim V. Lozin,et al.  Independent Sets of Maximum Weight in Apple-Free Graphs , 2008, SIAM J. Discret. Math..

[24]  Andreas Brandstädt,et al.  Maximum Weight Independent Sets in Odd-Hole-Free Graphs Without Dart or Without Bull , 2012, Graphs Comb..

[25]  D. Malyshev,et al.  Classes of subcubic planar graphs for which the independent set problem is polynomially solvable , 2013 .

[26]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[27]  Nicolas Trotignon,et al.  A Polynomial Turing-Kernel for Weighted Independent Set in Bull-Free Graphs , 2014, Algorithmica.

[28]  Frédéric Maffray,et al.  Maximum weight independent sets in classes related to claw-free graphs , 2017, Discret. Appl. Math..

[29]  Andreas Brandstädt,et al.  On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem , 2007, Theor. Comput. Sci..

[30]  Ingo Schiermeyer,et al.  New sufficient conditions for α-redundant vertices , 2015, Discret. Math..

[31]  Derek G. Corneil The complexity of generalized clique packing , 1985, Discret. Appl. Math..