An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints

We extend Bergsma and Rudas (2002)'s hierarchical complete marginal parameterization to allow for logits and higher order effects of global and continu- ation type which may be more suitable with ordinal data. We introduce a general definition of marginal interaction parameters and show that this parameterization constitutes a link function so that linear models defined by equality and inequality constraints may be fitted and tested by extending the methods of Colombi and Forcina (2001). Computation and asymptotic properties of maximum likelihood estimators are discussed, and the asymptotic distribution of the likelihood ratio test is derived.

[1]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[2]  Francesco Bartolucci,et al.  Positive Quadrant Dependence and Marginal Modeling in Two-Way Tables With Ordered Margins , 2001 .

[3]  Stephen E. Fienberg,et al.  Positive dependence concepts for ordinal contingency tables , 1990 .

[4]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[5]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[6]  A. Forcina,et al.  A Unified Approach to Likelihood Inference on Stochastic Orderings in a Nonparametric Context , 1998 .

[7]  P. McCullagh,et al.  Multivariate Logistic Models , 1995 .

[8]  W. Fleming Functions of Several Variables , 1965 .

[9]  A. Shapiro Towards a unified theory of inequality constrained testing in multivariate analysis , 1988 .

[10]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[11]  Joseph B. Lang,et al.  Maximum likelihood methods for a generalized class of log-linear models , 1996 .

[12]  Wicher P. Bergsma,et al.  Marginal models for categorical data , 2002 .

[13]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[14]  A. Forcina,et al.  Marginal regression models for the analysis of positive association of ordinal response variables , 2001 .

[15]  D. Andrews Estimation When a Parameter is on a Boundary , 1999 .

[16]  S. Haberman,et al.  The analysis of frequency data , 1974 .

[17]  G. Glonek A class of regression models for multivariate categorical responses , 1996 .

[18]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[19]  Francesco Bartolucci,et al.  Extended RC Association Models Allowing for Order Restrictions and Marginal Modeling , 2002 .

[20]  J. Aitchison,et al.  Maximum-Likelihood Estimation of Parameters Subject to Restraints , 1958 .

[21]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .