Graphs with Large Obstacle Numbers

Motivated by questions in computer vision and sensor networks, Alpert et al. [3] introduced the following definitions. Given a graph G, an obstacle representation of G is a set of points in the plane representing the vertices of G, together with a set of connected obstacles such that two vertices of G are joined by an edge if an only if the corresponding points can be connected by a segment which avoids all obstacles. The obstacle number of G is the minimum number of obstacles in an obstacle representation of G. It was shown in [3] that there exist graphs of n vertices with obstacle number at least Ω(√logn). We use extremal graph theoretic tools to show that (1) there exist graphs of n vertices with obstacle number at least Ω(n/log2 n), and (2) the total number of graphs on n vertices with bounded obstacle number is at most 2o(n2). Better results are proved if we are allowed to use only convex obstacles or polygonal obstacles with a small number of sides.

[1]  Subir Kumar Ghosh,et al.  Visibility Algorithms in the Plane , 2007 .

[2]  Richard Pollack,et al.  Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..

[3]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[4]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[5]  Christina Koch,et al.  Obstacle Numbers of Graphs , 2010, Discret. Comput. Geom..

[6]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[7]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[8]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[9]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[10]  Joseph O'Rourke,et al.  Open Problems in the Combinatorics of Visibility and Illumination , 1998 .

[11]  Ronald L. Graham,et al.  The Mathematics of Paul Erdős II , 1997 .

[12]  Endre Szemerédi,et al.  A Combinatorial Distinction Between the Euclidean and Projective Planes , 1983, Eur. J. Comb..

[13]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[14]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Jirí Matousek Blocking Visibility for Points in General Position , 2009, Discret. Comput. Geom..

[16]  A. Tucker,et al.  Coloring a Family of Circular Arcs , 1975 .

[17]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[18]  P. Hammer,et al.  Split Graphs Having Dilworth Number Two , 1977, Canadian Journal of Mathematics.

[19]  P. Erdös Some remarks on the theory of graphs , 1947 .

[20]  Mohammad Ghodsi,et al.  α-Visibility , 2012, Comput. Geom..

[21]  N. Alon The number of polytopes, configurations and real matroids , 1986 .

[22]  P. Seymour,et al.  Excluding induced subgraphs , 2006 .

[23]  David R. Wood,et al.  Blocking coloured point sets , 2010 .

[24]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[25]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[26]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[27]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[28]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[29]  János Pach,et al.  Combinatorial Geometry , 2012 .

[30]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..

[31]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs II: Extremal Graphs , 1993, Discret. Appl. Math..

[32]  J. Pach,et al.  Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .

[33]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[34]  János Pach,et al.  Midpoints of segments induced by a point set , 2003 .

[35]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs: Quadrilaterals , 1991, Random Struct. Algorithms.

[36]  János Pach,et al.  A note on blocking visibility between points , 2009 .

[37]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[38]  Esther M. Arkin,et al.  Arrangements of segments that share endpoints: Single face results , 1991, SCG '91.