Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection

Abstract This paper reports on a novel design of a remote sensor for temperature detection based on surface plasmon resonance and optical fiber technology. We theoretically analyze the performance of proposed sensor under different conditions related to its constituents, i.e., optical fiber, metallic layer, sensing region, and launched light. The effect of the related parameters such as numerical aperture, fiber length, core diameter, FWHM of the Gaussian input on sensor is analyzed along with its physical explanation. The numerical results presented in this paper leads to a significant optimization of the important design parameters to achieve a high temperature detection accuracy and sensitivity of a fiber optic remote sensor.

[1]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[2]  Hai-Pang Chiang,et al.  The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures , 1998 .

[3]  Nicole Jaffrezic-Renault,et al.  Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media , 2001 .

[4]  Banshi D. Gupta,et al.  On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers , 2005 .

[5]  Jiří Homola,et al.  Optical fiber sensor based on surface plasmon excitation , 1995 .

[6]  S. Yee,et al.  A fiber-optic chemical sensor based on surface plasmon resonance , 1993 .

[7]  Banshi D. Gupta,et al.  Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study , 2005 .

[8]  J. Rayne,et al.  Temperature dependence of the infrared absorptivity of the noble metals , 1976 .

[9]  Nicole Jaffrezic-Renault,et al.  The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor , 2000 .

[10]  P. Leiderer,et al.  Surface plasmon enhanced transient thermoreflectance , 1990 .

[11]  Banshi D. Gupta,et al.  Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation , 2004 .

[12]  H A Macleod,et al.  Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. , 1997, Biochimica et biophysica acta.

[13]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[14]  Sahin Kaya Ozdemir,et al.  Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor , 2003 .

[15]  J. Homola On the sensitivity of surface plasmon resonance sensors with spectral interrogation , 1997 .

[16]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[17]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[18]  R. W. Christy,et al.  Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au , 1977 .

[19]  T. Holstein,et al.  Optical and Infrared Volume Absorptivity of Metals , 1954 .

[20]  W. E. Lawrence Electron-electron scattering in the low-temperature resistivity of the noble metals , 1976 .