Application of a genetic algorithm in orbital maneuvers

This paper has the goal of calculating transfer trajectories between two coplanar orbits using several impulses, trying to find solutions that reduce the costs related to the fuel consumption required to apply these impulses. The number of impulses is given a priori, and a genetic algorithm is used to find the maneuvers that spent less fuel to be completed. Several types of maneuvers are simulated, including constrained maneuvers, where the spacecraft is forced to pass by intermediate orbits, and maneuvers that transfer a spacecraft from one body back to the same body. The method worked in all the situations and the maneuvers were found in all the situations.

[1]  John E. Prussing,et al.  Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit. , 1969 .

[2]  Francisco das Chagas Carvalho,et al.  A First-Order Analytical Theory for Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptical Coplanar Orbits , 2008 .

[3]  R. Culp,et al.  Synthesis of the Types of Optimal Transfers between Hyperbolic Asymptotes , 1975 .

[4]  Sang-Young Park,et al.  A lunar cargo mission design strategy using variable low thrust , 2009 .

[5]  V. M. Gomes,et al.  A study of the impact of the initial energy in a close approach of a cloud of particles , 2010 .

[6]  John E. Prussing,et al.  Optimal Two- and Three-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit , 2003 .

[7]  M. Handelsman,et al.  Primer Vector on Fixed-Time Impulsive Trajectories , 1967 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Donald L. Hitzl,et al.  Critical generating orbits for second species periodic solutions of the restricted problem , 1977 .

[10]  D. Jezewski,et al.  An analytic approach to two-fixed-impulse transfers between Keplerian orbits , 1982 .

[11]  Sandro da Silva Fernandes,et al.  A Review of Gradient Algorithms for Numerical Computation of Optimal Trajectories , 2012 .

[12]  A. Prado,et al.  TRANSFER ORBITS IN THE EARTH-MOON SYSTEM USING A REGULARIZED MODEL , 1996 .

[13]  A. Prado,et al.  The Study of the Asymmetric Multiple Encounters Problem and Its Application to Obtain Jupiter Gravity Assisted Maneuvers , 2013 .

[14]  A. Prado Numerical and analytical study of the gravitational capture in the bicircular problem , 2005 .

[15]  W. Hohmann,et al.  Die Erreichbarkeit der Himmelskörper: Untersuchungen über das Raumfahrtproblem , 1925 .

[16]  Dennis V. Byrnes,et al.  Interplanetary Trajectory Optimization with Application to Galileo , 1982 .

[17]  Classification of Out-of-Plane Swing-By Trajectories , 1999 .

[18]  A. Prado Close-Approach Trajectories in the Elliptic Restricted Problem , 1997 .

[19]  Chiara Toglia,et al.  Optimization of orbital trajectories using genetic algorithms , 2008 .

[20]  S. Fazelzadeh,et al.  Minimum-time Earth-Moon and Moon-Earth orbital maneuvers using time-domain finite element method , 2010 .

[21]  S. D. Fernandes Optimization of Low-Thrust Limited-Power Trajectories in a Noncentral Gravity Field—Transfers between Orbits with Small Eccentricities , 2009 .

[22]  Sidney A. Davis,et al.  Optimization of a multiple lunar-swingby trajectory sequence. , 1984 .

[23]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[24]  S. D. Fernandes,et al.  Optimal Two-Impulse Trajectories with Moderate Flight Time for Earth-Moon Missions , 2012 .

[25]  V. V. Ivashkin,et al.  Definition and analysis of properties of optimal three-impulse point-to-orbit transfers under time constraint , 1981 .

[26]  Lorenzo Casalino,et al.  Genetic Algorithm and Indirect Method Coupling for Low-Thrust Trajectory Optimization , 2006 .

[27]  R. Goddard A Method of Reaching Extreme Altitudes. , 1920, Nature.

[28]  G. Colasurdo,et al.  Four-Impulsive Rendezvous Maneuvers for Spacecrafts in Circular Orbits Using Genetic Algorithms , 2012 .

[29]  S. D. Fernandes Hori method for generalized canonical systems , 2009 .

[30]  Michel Hénon,et al.  The stability of second species periodic orbits in the restricted problem (μ = 0) , 1977 .

[31]  Jean Pierre Marec,et al.  Optimal Space Trajectories , 1979 .

[32]  A. Prado,et al.  Rendezvous maneuvers using Genetic Algorithm , 2013 .

[33]  A. Prado,et al.  Effects of atmospheric drag in swing-by trajectory , 1995 .

[34]  J. Longuski,et al.  Low-Thrust Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars , 2006 .

[35]  F. W. Gobetz,et al.  A survey of impulsive trajectories. , 1969 .

[36]  R. Broucke,et al.  Transfer orbits in restricted problem , 1995 .

[37]  A. Prado Orbital control of a satellite using the gravity of the Moon , 2006 .

[38]  S. D. Fernandes,et al.  Sun influence on two-impulsive Earth-to-Moon transfers , 2012 .

[39]  John E. Prussing,et al.  Optimal two- and three-impulse fixed-time rendezvous in the vicinityof a circular orbit , 1970 .

[40]  John T. Betts,et al.  Optimal Low Thrust Trajectories to the Moon , 2003, SIAM J. Appl. Dyn. Syst..