Singular perturbations of curved boundaries in dimension three. The spectrum of the Neumann Laplacian

We calculate the main asymptotic terms for eigenvalues, both simple and multiple, and eigenfunctions of the Neumann Laplacian in a three-dimensional domain $\Om(h)$ perturbed by a small (with diameter $O(h)$) Lipschitz cavern $\overline{\om_h}$ in a smooth boundary $\partial\Om=\partial\Om(0)$. The case of the hole $\overline{\om_h}$ inside the domain but very close to the boundary $\partial\Om$ is under consideration as well. It is proven that the main correction term in the asymptotics of eigenvalues does not depend on the curvature of $\partial\Om$ while terms in the asymptotics of eigenfunctions do. The influence of the shape of the cavern to the eigenvalue asymptotics relies mainly upon a certain matrix integral characteristics like the tensor of virtual masses. Asymptotically exact estimates of the remainders are derived in weighted norms.

[1]  V. G. Mazʹi︠a︡,et al.  Störungen isolierter randsingularitäten , 1991 .

[2]  Jan Sokolowski,et al.  Spectral problems in the shape optimisation. Singular boundary perturbations , 2008, Asymptot. Anal..

[3]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[4]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[5]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[6]  F. G. Leppington MATCHING OF ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS , 1994 .

[7]  V. Maz'ya,et al.  ON THE SINGULARITIES OF SOLUTIONS OF THE DIRICHLET PROBLEM IN THE EXTERIOR OF A SLENDER CONE , 1985 .

[8]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[9]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[10]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[11]  S. Nazarov,et al.  Self–adjoint Extensions for the Neumann Laplacian and Applications , 2006 .

[12]  V. G. Maz'ya,et al.  Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece , 1982 .

[13]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[14]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[15]  I Kamotski,et al.  Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators , 2000 .

[16]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[17]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[18]  Design Sensitivity Analysis of Eigenvalue Variations , 1981 .

[19]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[20]  S. Ozawa,et al.  Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains---the Neumann condition , 1985 .

[21]  Jan Sokolowski,et al.  Shape sensitivity analysis of eigenvalues revisited , 2008 .

[22]  S. Ozawa,et al.  An asymptotic formula for the eigenvalues of the Laplacian in a domain with a small hole , 1982 .

[23]  V. Maz'ya,et al.  ASYMPTOTIC EXPANSIONS OF THE EIGENVALUES OF BOUNDARY VALUE PROBLEMS FOR THE LAPLACE OPERATOR IN DOMAINS WITH SMALL HOLES , 1985 .

[24]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[25]  Bhimsen K. Shivamoggi,et al.  The Method of Matched Asymptotic Expansions , 2003 .

[26]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .