Block Compressive Sensing Single-View Video Reconstruction Using Joint Decoding Framework for Low Power Real Time Applications

[1]  Wai Chong Chia,et al.  Block Compressive Sensing (BCS) Based Low Complexity, Energy Efficient Visual Sensor Platform with Joint Multi-Phase Decoder (JMD) , 2019, Sensors.

[2]  Liang Xiao,et al.  Compressed sensing joint reconstruction for multi-view images , 2010 .

[3]  Michael B. Wakin,et al.  A geometric approach to multi-view compressive imaging , 2012, EURASIP J. Adv. Signal Process..

[4]  M. Ebrahim,et al.  A Performance Comparative Analysis of Block Based Compressive Sensing and Line Based Compressive Sensing , 2018 .

[5]  K. Ramchandran,et al.  Distributed video coding in wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[6]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[7]  K. Rijkse,et al.  H.263: video coding for low-bit-rate communication , 1996, IEEE Commun. Mag..

[8]  Thomas Maugey,et al.  Compressed sensing of multiview images using disparity compensation , 2010, 2010 IEEE International Conference on Image Processing.

[9]  Aidong Men,et al.  A joint reconstruction algorithm for multi-view compressed imaging , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[10]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[11]  Wei Lu,et al.  Modified compressive sensing for real-time dynamic MR imaging , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[12]  Maria Trocan,et al.  Compressed-sensing recovery of multiview image and video sequences using signal prediction , 2012, Multimedia Tools and Applications.

[13]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.