The Polyol Process and the Synthesis of ζ Intermetallic Compound Ag5Sn0.9

The present work concerns the intermetallic compound (IMC) existing in the Ag–Sn system and its potential use in electronics as attachment materials allowing the adhesion of the chip to the substrate forming the power module. First, we present the synthesis protocol in polyol medium of a compound with the chemical formula Ag5Sn0.9 belonging to the solid solution of composition located between 9 and 16 at.% Sn, known as solid solution ζ (or ζ-Ag4Sn). This phase corresponds to the peritectic invariant point at 724 °C. Differential thermal analysis and X-ray dispersive analysis confirm the single-phased (monocrystalline) nature of the Ag5Sn0.9 powder issued after synthesis. Scanning electron microscopy shows that Ag5Sn0.9 particles are spherical, and range in submicronic size of around 0.18 μm. X-ray diffraction analysis reveals that the ζ phase mostly exists under the two allotropic varieties (orthorhombic symmetry and hexagonal symmetry) with however a slight excess of the hexagonal variety (60% for the hexagonal variety and 40% for the orthorhombic variety). The lattice parameters resulting from this study for the two allotropic varieties are in good agreement with the Hume-Rothery rules.

[1]  F. Giovannelli,et al.  Microstructure effects on thermal and electrical conductivities in the intermetallic compound Ag3Sn-based materials, sintered by SPS in view of die-attachment applications , 2022, The European Physical Journal Special Topics.

[2]  S. Ammar,et al.  Polyol Synthesis: A Versatile Wet-Chemistry Route for the Design and Production of Functional Inorganic Nanoparticles , 2020, Nanomaterials.

[3]  Yufeng Zheng,et al.  In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. , 2019, Acta biomaterialia.

[4]  K. Kanlayasiri,et al.  Effects of Ag contents in Sn–xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate , 2019, Transactions of Nonferrous Metals Society of China.

[5]  E. Gautron,et al.  Synthesis of Ag3Sn Submicrometer Particles via an Adapted Polyol Process in View of Their Use As Die-Attach Material in Power Modules , 2019, Journal of Electronic Materials.

[6]  U. Jansson,et al.  Tuning tribological, mechanical and electrical properties of Ag-X (X=Al, In, Sn) alloys , 2018, Tribology International.

[7]  F. Chau,et al.  The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. , 2018, Chemical Society reviews.

[8]  C. Handwerker,et al.  Pb-free solders and other joining materials for potential replacement of high-Pb hierarchical solders , 2018, 2018 Pan Pacific Microelectronics Symposium (Pan Pacific).

[9]  Wolfgang Schmitt,et al.  Silver sinter paste for SiC bonding with improved mechanical properties , 2017, 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition.

[10]  Cyril Buttay Le Packaging en électronique de puissance , 2015 .

[11]  F. Hénaff Contribution à l'étude, la mise en oeuvre et à l'évaluation d'une solution de report de puce de puissance par procédé de frittage de pâte d'argent à haute pression et basse température , 2014 .

[12]  C. M. Johnson,et al.  Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment , 2014, Journal of Electronic Materials.

[13]  A. A. Mohamad,et al.  Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review , 2013 .

[14]  Cyril Buttay,et al.  Report de puce par frittage d'argent - mise en oeuvre et analyse , 2012 .

[15]  Guang Zeng,et al.  Development of high-temperature solders: Review , 2012, Microelectron. Reliab..

[16]  Hyuck-Mo Lee,et al.  Synthesis and characterization of highly conductive Sn–Ag bimetallic nanoparticles for printed electronics , 2012, Journal of Nanoparticle Research.

[17]  Kuan Yew Cheong,et al.  Die Attach Materials for High Temperature Applications: A Review , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[18]  E. Belin-ferre Surface properties and engineering of complex intermetallics , 2010 .

[19]  A. Kanaev,et al.  Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology , 2009 .

[20]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[21]  K. Suganuma,et al.  High-temperature lead-free solders: Properties and possibilities , 2009 .

[22]  J. Etzkorn,et al.  Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering , 2008 .

[23]  Tao Wang,et al.  Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection , 2007 .

[24]  Xu Chen,et al.  Low-temperature and Pressureless Sintering Technology for High-performance and High-temperature Interconnection of Semiconductor Devices , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[25]  Jun Chen,et al.  The effect of Ag content on the formation of Ag3Sn plates in Sn-Ag-Cu lead-free solder , 2006 .

[26]  Chen Wei,et al.  Formation of bulk Ag3Sn intermetallic compounds in Sn-Ag lead-free solders in solidification , 2005 .

[27]  Guofeng Bai,et al.  Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection , 2005 .

[28]  P. G. Harne,et al.  Low temperature coefficient of resistivity Ag–Cd and Ag–Sn alloys—structure and transport , 2004 .

[29]  M. Ellner,et al.  In situ and ex situ investigation of the displacive phase transformations Ag3Sn(h) → Ag3Sn(l) and Ag3Sb(h) → Ag3Sb(l) , 2003 .

[30]  O. Acher,et al.  Heterogeneous nucleation and growth of metal nanoparticles in polyols , 2001 .

[31]  L. Poul,et al.  Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study , 2000 .

[32]  D. Jézéquel,et al.  Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics , 1995 .

[33]  B. Beaudoin,et al.  Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles , 1989 .

[34]  M. I. Novgorodova,et al.  Native silver and its new structural modifications , 1981 .

[35]  J. Cohen,et al.  The crystal structures of two compounds found in dental amalgam: Ag2Hg3 and Ag3Sn , 1972 .

[36]  P. Beck Alloy phases of the noble metals , 1965 .

[37]  H. W. King,et al.  Lattice spacing relationships and the electronic structure of H.C.P. ζ phases based on silver , 1961 .

[38]  J. Arvid Hedvall,et al.  The reactivity of solids , 1953 .

[39]  N. Zotov,et al.  Redetermination of the crystal structure of the Ag3Sn intermetallic compound , 2015 .

[40]  A. Morozumi,et al.  Influence of Antimony on Reliability of Solder Joints Using Sn-Sb Binary Alloy for Power Semiconductor Modules , 2015 .

[41]  T. Coradin,et al.  Nanomaterials: A Danger or a Promise? , 2013 .

[42]  Amauri Garcia,et al.  The Effects of Microstructure and Ag3Sn and Cu6Sn5 Intermetallics on the Electrochemical Behavior of Sn-Ag and Sn-Cu Solder Alloys , 2012, International Journal of Electrochemical Science.

[43]  Mohamed Benchikhi Élaboration par chimie douce et caractérisations de semi-conducteurs nanométriques à base de sulfures (de type CuInS2) et d'oxydes (de type CuMoO4) , 2012 .

[44]  水谷 宇一郎,et al.  Hume-Rothery rules for structurally complex alloy phases , 2011 .

[45]  H. W. King,et al.  Alloy phases of the noble metals , 1963 .