Remedies to rotational frame dependence and interpolation failure of US‐QUAD8 element

It is known that the recently introduced unsymmetric 8-node quadrilateral element (US-QUAD8) is highly tolerant to mesh distortions. The high distortion tolerance of US-QUAD8 is due to the ability of the element to satisfy all the desirable compatibility and completeness requirements of the test and trial functions. The element uses isoparametric and metric shape functions as the test and trial functions, respectively. Despite its high distortion tolerance, the element has two defects. The use of metric shape functions as trial functions causes the element to exhibit rotational frame dependence as well as interpolation failure under certain conditions. A detailed investigation into both these problems is reported and remedies are proposed. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[2]  Peter Wriggers,et al.  IMPROVED ENHANCED STRAIN FOUR-NODE ELEMENT WITH TAYLOR EXPANSION OF THE SHAPE FUNCTIONS , 1997 .

[3]  L. Nash Gifford More on distorted isoparametric elements , 1979 .

[4]  Generation of an eight node brick element using Papcovitch-Neuber functions , 1995 .

[5]  K. M. Liew,et al.  A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field , 2003 .

[6]  Agostino A. Cannarozzi,et al.  A displacement scheme with drilling degrees of freedom for plane elements , 1995 .

[7]  S. Rajendran,et al.  Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations , 2004 .

[8]  K. M. Liew,et al.  Completeness requirements of shape functions for higher order finite elements , 2000 .

[9]  K. Y. Sze,et al.  On immunizing five‐beta hybrid‐stress element models from ‘trapezoidal locking’ in practical analyses , 2000 .

[10]  Robert L. Spilker,et al.  Plane isoparametric hybrid‐stress elements: Invariance and optimal sampling , 1981 .

[11]  Jan Bäcklund On isoparametric elements , 1978 .

[12]  U. Shrinivasa,et al.  Eight-node brick, PN340, represents constant stress fields exactly , 2000 .

[13]  J. A. Stricklin,et al.  On isoparametricvs linear strain triangular elements , 1977 .

[14]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[15]  K. M. Liew,et al.  A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields , 2006 .

[16]  Song Cen,et al.  Membrane elements insensitive to distortion using the quadrilateral area coordinate method , 2004 .

[17]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[18]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[19]  F. Bussamra,et al.  Three-dimensional hybrid-Trefftz stress elements , 2000 .

[20]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[21]  Byung Chai Lee,et al.  New stress assumption for hybrid stress elements and refined four-node plane and eight-node brick elements , 1997 .

[22]  E. Ooi,et al.  Mesh‐distortion immunity assessment of QUAD8 elements by strong‐form patch tests , 2006 .

[23]  Peter Wriggers,et al.  A formulation for the 4‐node quadrilateral element , 1995 .

[24]  Y. Nie,et al.  Combined hybrid approach to finite element schemes of high performance , 2001 .

[25]  C. Cismaşiu,et al.  Numerical implementation of hybrid-Trefftz displacement elements , 1999 .

[26]  Ean Tat Ooi,et al.  A 20‐node hexahedron element with enhanced distortion tolerance , 2004 .