Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications

A new hybrid particle swarm optimization (PSO) that incorporates a wavelet-theory-based mutation operation is proposed. It applies the wavelet theory to enhance the PSO in exploring the solution space more effectively for a better solution. A suite of benchmark test functions and three industrial applications (solving the load flow problems, modeling the development of fluid dispensing for electronic packaging, and designing a neural-network-based controller) are employed to evaluate the performance and the applicability of the proposed method. Experimental results empirically show that the proposed method significantly outperforms the existing methods in terms of convergence speed, solution quality, and solution stability.

[1]  D. Ernst,et al.  Transient stability-constrained optimal power flow , 1999, PowerTech Budapest 99. Abstract Records. (Cat. No.99EX376).

[2]  G. Lambert-Torres,et al.  A hybrid particle swarm optimization applied to loss power minimization , 2005, IEEE Transactions on Power Systems.

[3]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[4]  J.G. Vlachogiannis,et al.  A Comparative Study on Particle Swarm Optimization for Optimal Steady-State Performance of Power Systems , 2006, IEEE Transactions on Power Systems.

[5]  Chao-Ming Huang,et al.  A particle swarm optimization to identifying the ARMAX model for short-term load forecasting , 2005 .

[6]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[7]  G. Sheblé,et al.  Refined genetic algorithm-economic dispatch example , 1995 .

[8]  Jan Karel Lenstra,et al.  A local search template , 1998, Comput. Oper. Res..

[9]  Jing J. Liang,et al.  Performance Evaluation of Multiagent Genetic Algorithm , 2006, Natural Computing.

[10]  W. Liu,et al.  A Hybrid Particle Swarm Optimization Algorithm for Predicting the Chaotic Time Series , 2006, 2006 International Conference on Mechatronics and Automation.

[11]  Colin R. Reeves,et al.  Genetic Algorithms and Neighbourhood Search , 1994, Evolutionary Computing, AISB Workshop.

[12]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[14]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[16]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[17]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[18]  C.A. Roa-Sepulveda,et al.  A solution to the optimal power flow using simulated annealing , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[19]  J. Carpentier,et al.  Optimal Power Flows , 1979, VSC-FACTS-HVDC.

[20]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[21]  A. Neubauer,et al.  A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[22]  Yanchun Liang,et al.  Hybrid evolutionary algorithms based on PSO and GA , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[23]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  Prasad K. Yarlagadda,et al.  Prediction of die casting process parameters by using an artificial neural network model for zinc alloys , 2000 .

[25]  Bopaya Bidanda,et al.  A neural network process model for abrasive flow machining operations , 1998 .

[26]  T.O. Ting,et al.  A novel approach for unit commitment problem via an effective hybrid particle swarm optimization , 2006, IEEE Transactions on Power Systems.

[27]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  James A. Momoh,et al.  Challenges to optimal power flow , 1997 .

[29]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Xiongxiong He,et al.  Modeling identification of power plant thermal process based on PSO algorithm , 2005, Proceedings of the 2005, American Control Conference, 2005..

[31]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[32]  Zengqiang Chen,et al.  New Chaotic PSO-Based Neural Network Predictive Control for Nonlinear Process , 2007, IEEE Transactions on Neural Networks.

[33]  M.M. Noel,et al.  Simulation of a new hybrid particle swarm optimization algorithm , 2004, Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the.

[34]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[35]  Jonathan A. Wright,et al.  Self-adaptive fitness formulation for constrained optimization , 2003, IEEE Trans. Evol. Comput..

[36]  C. Czenkusch,et al.  Modelling and optimization of grinding processes , 1998, J. Intell. Manuf..

[37]  H. Yoshida,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 1999, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[38]  Leandro dos Santos Coelho,et al.  Particle swarm optimization (PSO) applied to fuzzy modeling in a thermal-vacuum system , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[39]  YuShen Wang,et al.  Adaptive inverse control based on particle swarm optimization algorithm , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[40]  Yu Li,et al.  Particle swarm optimisation for evolving artificial neural network , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[41]  Chuangxin Guo,et al.  A multiagent-based particle swarm optimization approach for optimal reactive power dispatch , 2005 .

[42]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[43]  James A. Momoh,et al.  Improved interior point method for OPF problems , 1999 .

[44]  Claudio A. Roa-Sepulveda,et al.  A solution to the optimal power flow using simulated annealing , 2003 .

[45]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[46]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[47]  Hong-Chan Chang,et al.  Large-scale economic dispatch by genetic algorithm , 1995 .

[48]  Shengwei Mei,et al.  Multicontingency transient stability constrained optimal power flow by genetic algorithm , 2006 .