Crystallographic Studies of Chemically Modified Nucleic Acids: A Backward Glance

Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high‐throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein–nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal‐structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor‐made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.

[1]  A. Eschenmoser,et al.  Warum Pentose‐ und nicht Hexose‐Nucleinsäuren?? Teil I. Einleitung und Problemstellung, Konformationsanalyse für Oligonucleotid‐Ketten aus 2′,3′‐Dideoxyglucopyranosyl‐Bausteinen (‘Homo‐DNS’) sowie Betrachtungen zur Konformation von A‐ und B‐DNS , 1992 .

[2]  M. Egli,et al.  Structure and Activity of Y-class DNA Polymerase DPO4 from Sulfolobus solfataricus with Templates Containing the Hydrophobic Thymine Analog 2,4-Difluorotoluene* , 2007, Journal of Biological Chemistry.

[3]  I. Brukner,et al.  HYBRIDS OF RNA AND ARABINONUCLEIC ACIDS (ANA AND 2'F-ANA) ARE SUBSTRATES OF RIBONUCLEASE H , 1998 .

[4]  K. Altmann,et al.  RNA-Binding affinities and crystal structure of oligonucleotides containing five-atom amide-based backbone structures. , 2006, Biochemistry.

[5]  E. Meggers,et al.  Duplex Structure of a Minimal Nucleic Acid , 2008, Journal of the American Chemical Society.

[6]  M. Egli,et al.  Stabilizing effects of the RNA 2'-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2'-O-methylated adenosines. , 1994, Chemistry & biology.

[7]  M. Stephenson,et al.  Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[8]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. , 1976, Journal of molecular biology.

[9]  A. Rich,et al.  Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes , 1993 .

[10]  A. Rich,et al.  DNA-nogalamycin interactions. , 1991, Biochemistry.

[11]  M. Sundaralingam,et al.  B-form to A-form conversion by a 3'-terminal ribose: crystal structure of the chimera d(CCACTAGTG)r(G). , 2000, Nucleic acids research.

[12]  A. Eschenmoser,et al.  Warum pentose-und nicht hexose-nucleinsäuren? Teil III. Oligo(2′,3′-dideoxy-β-D-glucopyranosyl) nucleotide (‘homo-DNS’): Paarungesigenschaften†‡ , 1993 .

[13]  H R Drew,et al.  Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. , 1982, The Journal of biological chemistry.

[14]  M. Manoharan,et al.  A conformational transition in the structure of a 2'-thiomethyl-modified DNA visualized at high resolution. , 2009, Chemical communications.

[15]  E. Kool,et al.  The difluorotoluene debate--a decade later. , 2006, Chemical communications.

[16]  S. Crooke,et al.  Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. , 1997, Biochemistry.

[17]  P. Hausen,et al.  Enzyme from Calf Thymus Degrading the RNA Moiety of DNA-RNA Hybrids: Effect on DNA-Dependent RNA Polymerase , 1969, Science.

[18]  S. Crooke Therapeutic Applications of Oligonucleotides , 1992, Bio/Technology.

[19]  A. Rich,et al.  Inter-strand C-H...O hydrogen bonds stabilizing four-stranded intercalated molecules: stereoelectronic effects of O4' in cytosine-rich DNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Crooke,et al.  Structural Requirements at the Catalytic Site of the Heteroduplex Substrate for Human RNase H1 Catalysis* , 2004, Journal of Biological Chemistry.

[21]  K. Altmann,et al.  The residence time of the bound water in the hydrophobic minor groove of the carbocyclic-nucleoside analogs of Dickerson-Drew dodecamers. , 1998, Journal of biomolecular structure & dynamics.

[22]  Christian J. Leumann,et al.  Antisense properties of tricyclo-DNA , 2002, Nucleic Acids Res..

[23]  M. Manoharan,et al.  X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. , 1998, Biopolymers.

[24]  A. Levin A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. , 1999, Biochimica et biophysica acta.

[25]  Stephen Neidle,et al.  Principles of nucleic acid structure , 2007 .

[26]  N. Minakawa,et al.  The Stereoselective Synthesis of 4‘-β-Thioribonucleosides via the Pummerer Reaction† , 2000 .

[27]  Jens Kurreck,et al.  Nucleic acids chemistry and biology. , 2003, Angewandte Chemie.

[28]  M. Egli,et al.  Backbone-base inclination as a fundamental determinant of nucleic acid self- and cross-pairing , 2007, Nucleic acids research.

[29]  M. Egli Conformational preorganization, hydration, and nucleic acid duplex stability. , 1998, Antisense & nucleic acid drug development.

[30]  Ravi Braich,et al.  Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. , 2006, ACS chemical biology.

[31]  M. Manoharan 2'-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. , 1999, Biochimica et biophysica acta.

[32]  Martin Egli,et al.  The Dickerson-Drew B-DNA Dodecamer Revisited-At Atomic Resolution , 1998 .

[33]  P. D. Cook,et al.  Chapter 31 - Second Generation Antisense Oligonucleotides: 2′-Modifications , 1998 .

[34]  N. Minakawa,et al.  Synthesis and physical and physiological properties of 4'-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB. , 2004, Nucleic acids research.

[35]  M. Egli,et al.  Crystallization and preliminary X-ray analysis of Escherichia coli RNase HI-dsRNA complexes. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[36]  A. Rich,et al.  Large scale chemical synthesis, purification and crystallization of RNA-DNA chimeras. , 1992, Nucleic Acids Research.

[37]  M. Egli,et al.  Crystal structure of a parallel-stranded duplex of a deoxycytidylyl-(3'-5')-deoxycytidine analog containing intranucleosidyl C(3')-C(5') ethylene bridges , 1993 .

[38]  A. Rich,et al.  Molecular structure of r(GCG)d(TATACGC): a DNA–RNA hybrid helix joined to double helical DNA , 1982, Nature.

[39]  Jayodita C. Sanghvi,et al.  Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme , 2007, Nucleic acids research.

[40]  M. Egli,et al.  A left-handed supramolecular assembly around a right-handed screw axis in the crystal structure of homo-DNA. , 2007, Chemical communications.

[41]  Wei Yang,et al.  Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis , 2005, Cell.

[42]  M. Egli DNA-cation interactions: quo vadis? , 2002, Chemistry & biology.

[43]  N. Usman,et al.  Synthesis and Structure of 1-Deoxy-1-phenyl-beta-D-ribofuranose and Its Incorporation into Oligonucleotides. , 1996, The Journal of organic chemistry.

[44]  R. Pattanayek,et al.  Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. , 2006, Journal of the American Chemical Society.

[45]  R. Adamiak,et al.  Crystal structure of 2'-O-Me(CGCGCG)2, an RNA duplex at 1.30 A resolution. Hydration pattern of 2'-O-methylated RNA. , 1997, Nucleic acids research.

[46]  M. Wasielewski,et al.  Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. , 2001, Accounts of chemical research.

[47]  M. Stephenson,et al.  Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Lloyd,et al.  Structural RNA mimetics: N3'-->P5' phosphoramidate DNA analogs of HIV-1 RRE and TAR RNA form A-type helices that bind specifically to Rev and Tat-related peptides. , 1997, Biochemistry.

[49]  K. Altmann,et al.  Crystal Structures of Oligodeoxyribonucleotides Containing 6'-alpha-Methyl and 6'-alpha-Hydroxy Carbocyclic Thymidines , 1996 .

[50]  S. Agrawal,et al.  Enzymatic Synthesis of Stereoregular (All Rp) Oligonucleotide Phosphorothioate and Its Properties , 1995 .

[51]  M. Manoharan,et al.  Direct observation of a cytosine analogue that forms five hydrogen bonds to guanosine: guanidino G-clamp. , 2002, Angewandte Chemie.

[52]  A. Rich,et al.  Structure of 11-deoxydaunomycin bound to DNA containing a phosphorothioate. , 1990, Journal of molecular biology.

[53]  B. Reid,et al.  Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA. , 1993, Journal of molecular biology.

[54]  V. Mohan,et al.  The Influence of Antisense Oligonucleotide-induced RNA Structure on Escherichia coli RNase H1 Activity* , 1997, The Journal of Biological Chemistry.

[55]  S. Crooke,et al.  Therapeutic applications of oligonucleotides. , 1992, Bio/technology.

[56]  M. Teplova,et al.  Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. , 2002, Journal of the American Chemical Society.

[57]  W. Stec,et al.  Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3'-exonuclease. , 1997, Antisense & nucleic acid drug development.

[58]  E. Lesnik,et al.  Pharmacokinetic properties of 2'-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. , 2001, The Journal of pharmacology and experimental therapeutics.

[59]  M. Manoharan,et al.  2'-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H. , 2006, Biochemistry.

[60]  Martin Egli,et al.  Crystal structure of a B-form DNA duplex containing (L)-alpha-threofuranosyl (3'-->2') nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA. , 2002, Journal of the American Chemical Society.

[61]  Chemistry of potentially prebiological natural products , 1992 .

[62]  M. Egli,et al.  Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex , 2008, Cell cycle.

[63]  G. Michael Blackburn,et al.  Nucleic acids in chemistry and biology , 2007 .

[64]  M. Manoharan,et al.  Structural rationalization of a large difference in RNA affinity despite a small difference in chemistry between two 2'-O-modified nucleic acid analogues. , 2004, Journal of the American Chemical Society.

[65]  A. Rich,et al.  Crystal structure of an Okazaki fragment at 2-A resolution. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[66]  F. Natt,et al.  Correlating structure and stability of DNA duplexes with incorporated 2'-O-modified RNA analogues. , 1998, Biochemistry.

[67]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[68]  C. Thibaudeau Stereoelectronic effects in nucleosides and nucleotides , 1999 .

[69]  M. Egli,et al.  Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures , 2007, Nature Protocols.

[70]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[71]  B. Diop-Frimpong,et al.  Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2′-O-[2-(methoxy)ethyl]-2-thiothymidines , 2005, Nucleic acids research.

[72]  M. Teplova,et al.  Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA. , 2000, Biochemistry.

[73]  A. Rich,et al.  Crystal structure of a Z-DNA fragment containing thymine/2-aminoadenine base pairs. , 1986, Journal of biomolecular structure & dynamics.

[74]  S. A. Salisbury,et al.  Chiral phosphorothioate analogues of B-DNA. The crystal structure of Rp-d[Gp(S)CpGp(S)CpGp(S)C]. , 1986, Journal of molecular biology.

[75]  Z. Wawrzak,et al.  Why does TNA cross-pair more strongly with RNA than with DNA? an answer from X-ray analysis. , 2003, Angewandte Chemie.

[76]  S. Gryaznov,et al.  Oligodeoxyribonucleotide N3'.fwdarw.P5' Phosphoramidates: synthesis and Hybridization Properties , 1994 .

[77]  E. Lesnik,et al.  2'-O-[2-(guanidinium)ethyl]-modified oligonucleotides: stabilizing effect on duplex and triplex structures. , 2004, Organic letters.

[78]  R. Pattanayek,et al.  Selenium-assisted nucleic acid crystallography: use of phosphoroselenoates for MAD phasing of a DNA structure. , 2002, Journal of the American Chemical Society.

[79]  E. Uhlmann,et al.  Antisense oligonucleotides: a new therapeutic principle , 1990 .

[80]  C. Ban,et al.  A single 2'-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet. , 1994, Journal of molecular biology.

[81]  Doriano Fabbro,et al.  Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase , 1996, Nature Medicine.

[82]  S. Freier,et al.  The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. , 1997, Nucleic acids research.

[83]  M. Egli Structural Aspects of Nucleic Acid Analogs and Antisense Oligonucleotides , 1996 .

[84]  K. Lin,et al.  Tricyclic 2'-Deoxycytidine Analogs: Syntheses and Incorporation into Oligodeoxynucleotides Which Have Enhanced Binding to Complementary RNA , 1995 .

[85]  R. Micura,et al.  Effects of N2,N2-dimethylguanosine on RNA structure and stability: crystal structure of an RNA duplex with tandem m2 2G:A pairs. , 2008, RNA.

[86]  O. Uhlenbeck,et al.  Functional groups on the cleavage site pyrimidine nucleotide are required for stabilization of the hammerhead transition state. , 1997, RNA.

[87]  M. Egli,et al.  Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. , 2007, Annual review of biophysics and biomolecular structure.

[88]  P. D. Cook,et al.  Structural origins of the exonuclease resistance of a zwitterionic RNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  N. Usman,et al.  RNA hydration: a detailed look. , 1996, Biochemistry.

[90]  M. Egli,et al.  Face-to-face and edge-to-face pi-pi interactions in a synthetic DNA hairpin with a stilbenediether linker. , 2003, Journal of the American Chemical Society.

[91]  K. Guckian,et al.  Experimental Measurement of Aromatic Stacking Affinities in the Context of Duplex DNA. , 1996, Journal of the American Chemical Society.

[92]  N. Seeman,et al.  A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3',5'-cytidine. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Moras,et al.  High resolution structure of the RNA duplex [U(U-A)6A]2 , 1988, Nature.

[94]  Eric Meggers,et al.  A simple glycol nucleic acid. , 2005, Journal of the American Chemical Society.

[95]  E. Lesnik,et al.  2'-O-[2-(methylthio)ethyl]-modified oligonucleotide: an analogue of 2'-O-[2-(methoxy)-ethyl]-modified oligonucleotide with improved protein binding properties and high binding affinity to target RNA. , 2002, Biochemistry.

[96]  J. V. van Boom,et al.  The crystal structure of d(GGm5CCGGCC): The effect of methylation on A‐DNA structure and stability , 1987, Biopolymers.

[97]  L. Bellon,et al.  4'-Thio-RNA: synthesis of mixed base 4'-thio-oligoribonucleotides, nuclease resistance, and base pairing properties with complementary single and double strand. , 1995, Antisense research and development.

[98]  M. Egli,et al.  Consequences of Replacing the DNA 3‘-Oxygen by an Amino Group: High-Resolution Crystal Structure of a Fully Modified N3‘ → P5‘ Phosphoramidate DNA Dodecamer Duplex† , 1998 .

[99]  M. Teplova,et al.  Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion. , 2002, Biochimie.

[100]  D. Szymkowski,et al.  Developing antisense oligonucleotides from the laboratory to clinical trials , 1996 .

[101]  D. Lloyd,et al.  Synthesis of oligodeoxyribonucleotide N3'-->P5' phosphoramidates. , 1995, Nucleic acids research.

[102]  E. Lesnik,et al.  Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2'-O-ribonucleic acid modifications. , 2005, Biochemistry.

[103]  M. Manoharan,et al.  Structural Basis for Recognition of Guanosine by a Synthetic Tricyclic Cytosine Analogue: Guanidinium G-Clamp , 2003 .

[104]  A. Rich,et al.  AT base pairs are less stable than GC base pairs in Z-DNA: The crystal structure of d(m5CGTAm5CG) , 1984, Cell.

[105]  R. Dickerson,et al.  DNA structure from A to Z. , 1992, Methods in enzymology.

[106]  E. Westhof,et al.  Hydrophobic Groups Stabilize the Hydration Shell of 2'-O-Methylated RNA Duplexes. , 2001, Angewandte Chemie.

[107]  N. Usman,et al.  Crystal structure of an RNA duplex containing phenyl-ribonucleotides, hydrophobic isosteres of the natural pyrimidines. , 2000, RNA.

[108]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[109]  Martin Egli,et al.  A "Hydrat-Ion" Spine in a B-DNA Minor Groove , 1999 .

[110]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[111]  Fritz Eckstein,et al.  Chiral phosphorothioate analogues of B-DNA: The crystal structure of Rp-d¦Gp(S)CpGp(S)CpGp(S)C¦☆ , 1993 .

[112]  O. Kennard,et al.  SINGLE-CRYSTAL X-RAY DIFFRACTION STUDIES OF OLIGONUCLEOTIDES AND OLIGONUCLEOTIDE-DRUG COMPLEXES , 1991 .

[113]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[114]  Katunori Suzuki,et al.  In: Advances in enzyme regulation , 1988 .

[115]  E. Westhof,et al.  Solvation of the left-handed hexamer d(5BrC-G-5BrC-G-5 BrC-G) in crystals grown at two temperatures. , 1986, Journal of molecular biology.

[116]  P. D. Cook,et al.  2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] modified oligonucleotides: symbiosis of charge interaction factors and stereoelectronic effects. , 2003, Organic letters.

[117]  N. Minakawa,et al.  Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA , 2006, Nucleic acids research.

[118]  R. T. Walker,et al.  The crystal structure analysis of d(CGCGAASSCGCG)2, a synthetic DNA dodecamer duplex containing four 4'-thio-2'-deoxythymidine nucleotides. , 1996, Nucleic acids research.

[119]  S. Benner,et al.  Crystal Structure of a Dimethylene Sulfone-Linked Ribodinucleotide Analog , 1995 .

[120]  M. Egli,et al.  Crystal structures of B-DNA with incorporated 2'-deoxy-2'-fluoro-arabino-furanosyl thymines: implications of conformational preorganization for duplex stability. , 1998, Nucleic acids research.

[121]  M. Teplova,et al.  X-ray crystal structure of a locked nucleic acid (LNA) duplex composed of a palindromic 10-mer DNA strand containing one LNA thymine monomer , 2001 .

[122]  D. Renneberg,et al.  Watson-Crick base-pairing properties of tricyclo-DNA. , 2002, Journal of the American Chemical Society.

[123]  N. Usman,et al.  The crystal structure of r(CCCCGGGG) in two distinct lattices. , 1995, Biochemistry.

[124]  P. D. Cook,et al.  Crystal structure and improved antisense properties of 2'-O-(2-methoxyethyl)-RNA , 1999, Nature Structural Biology.

[125]  F. Natt,et al.  STUDIES OF A CHEMICALLY MODIFIED OLIGODEOXYNUCLEOTIDE CONTAINING A 5-ATOM AMIDE BACKBONE WHICH EXHIBITS IMPROVED BINDING TO RNA , 2001, Nucleosides, Nucleotides & Nucleic Acids.

[126]  A. Gewirtz,et al.  Nucleic-acid therapeutics: basic principles and recent applications , 2002, Nature Reviews Drug Discovery.

[127]  M. Manoharan,et al.  Detection of alkali metal ions in DNA crystals using state-of-the-art X-ray diffraction experiments. , 2001, Nucleic acids research.

[128]  A. Karpeisky,et al.  Chemically modified hammerhead ribozymes with improved catalytic rates. , 1996, Biochemistry.

[129]  A. Rich,et al.  Methylation of the EcoRI recognition site does not alter DNA conformation: the crystal structure of d(CGCGAm6ATTCGCG) at 2.0-A resolution. , 1989, The Journal of biological chemistry.

[130]  M. Egli,et al.  Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. , 1999, Journal of molecular biology.

[131]  M. Wasielewski,et al.  Structure and photoinduced electron transfer in exceptionally stable synthetic DNA hairpins with stilbenediether linkers , 1999 .

[132]  M. Egli,et al.  Syntheses of 4′-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4′-thiocytosine , 2005, Nucleic acids research.

[133]  Z. Wawrzak,et al.  Crystal structure of tricyclo-DNA: an unusual compensatory change of two adjacent backbone torsion angles. , 2008, Chemical communications.

[134]  M. Egli,et al.  The long and winding road to the structure of homo-DNA. , 2007, Chemical Society reviews.

[135]  J. Walder,et al.  Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[136]  J. C. Martin,et al.  Current concepts in antisense drug design. , 1993, Journal of medicinal chemistry.

[137]  E. Kool,et al.  Efficient replication between non-hydrogen-bonded nucleoside shape analogs , 1998, Nature Structural Biology.