Nanogenerator for scavenging low frequency vibrations

[1]  Wei Tang,et al.  Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration , 2014 .

[2]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[3]  B. Mann,et al.  On the performance and resonant frequency of electromagnetic induction energy harvesters , 2010 .

[4]  E. Yeatman,et al.  A scalable piezoelectric impulse-excited energy harvester for human body excitation , 2012 .

[5]  Caofeng Pan,et al.  Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy , 2015 .

[6]  Ran Cao,et al.  Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. , 2017, ACS nano.

[7]  Xudong Wang,et al.  Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development , 2016 .

[8]  Joo-Yun Jung,et al.  Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. , 2015, ACS nano.

[9]  M. Vosgueritchian,et al.  Stretchable Energy‐Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes , 2014, Advanced materials.

[10]  Hengyu Guo,et al.  Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dual-functional self-powered sensor , 2015 .

[11]  Simiao Niu,et al.  Theoretical systems of triboelectric nanogenerators , 2015 .

[12]  Zhong Lin Wang,et al.  Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. , 2016, ACS nano.

[13]  Weiqing Yang,et al.  Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. , 2014, ACS nano.

[14]  A. Diaz,et al.  A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties , 2004 .

[15]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[16]  Jae Young Lee,et al.  Simplified Process for Manufacturing Macroscale Patterns to Enhance Voltage Generation by a Triboelectric Generator , 2015 .

[17]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[18]  Pukar Maharjan,et al.  A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy , 2018, Nano Energy.

[19]  Gwiy-Sang Chung,et al.  Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever , 2012 .

[20]  Xinxin Li,et al.  Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion , 2011 .

[21]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[22]  Long Lin,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[23]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[24]  Jong-Hyun Ahn,et al.  Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics , 2016 .

[25]  Jae Yeong Park,et al.  Design and experiment of hybridized electromagnetic-triboelectric energy harvester using Halbach magnet array from handshaking vibration , 2017 .

[26]  Xiaojing Mu,et al.  Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film , 2016, Nano Research.

[27]  Long Lina,et al.  Transparent flexible nanogenerator as self-powered sensor for transportation monitoring , 2012 .

[28]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[29]  T. Galchev,et al.  Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations , 2011, Journal of Microelectromechanical Systems.

[30]  Jae Y. Park,et al.  A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations , 2018, Energy Conversion and Management.

[31]  J. Park,et al.  A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications , 2018 .

[32]  Mengdi Han,et al.  Single-Step Fluorocarbon Plasma Treatment-Induced Wrinkle Structure for High-Performance Triboelectric Nanogenerator. , 2016, Small.

[33]  Hao Yu,et al.  Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide , 2015, Scientific Reports.

[34]  Weiqing Yang,et al.  Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator , 2014 .

[35]  Chih-Cheng Chang,et al.  An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress , 2014, Sensors.

[36]  Dibin Zhu,et al.  Vibration Energy Harvesting: Machinery Vibration, Human Movement and Flow Induced Vibration , 2011 .

[37]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[38]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[39]  Weiqi Wang,et al.  High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment , 2014 .

[40]  Tao Jiang,et al.  Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing , 2017, Nano Energy.

[41]  Zhong Lin Wang,et al.  Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. , 2013, ACS nano.

[42]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[43]  Sihong Wang,et al.  Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes , 2014, Advanced materials.

[44]  J. Yu,et al.  Facile fabrication and characterization of arch‐shaped triboelectric nanogenerator with a graphite top electrode , 2015 .

[45]  Hyunok Cho,et al.  Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system , 2019, Nano Energy.

[46]  M. Meyyappan,et al.  Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting , 2015, Scientific Reports.

[47]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[48]  Zhong Lin Wang,et al.  A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy , 2017 .

[49]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[50]  Chang-Hyeon Ji,et al.  A low frequency vibration energy harvester using magnetoelectric laminate composite , 2013 .

[51]  Simiao Niu,et al.  Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. , 2014, ACS nano.

[52]  Zhong Lin Wang,et al.  Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. , 2015, ACS nano.

[53]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[54]  Hengyu Guo,et al.  Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy , 2014 .

[55]  Zhong Lin Wang,et al.  Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs , 2013 .

[56]  P. Tse,et al.  Design and performance of a multimodal vibration-based energy harvester model for machine rotational frequencies , 2017 .

[57]  Zhong Lin Wang,et al.  Theory of freestanding triboelectric-layer-based nanogenerators , 2015 .

[58]  Hengyu Guo,et al.  Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors , 2018 .

[59]  Tao Jiang,et al.  Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel , 2018 .

[60]  Khalil Najafi,et al.  A piezoelectric frequency-increased power generator for scavenging low-frequency ambient vibration , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[61]  Chengkuo Lee,et al.  Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper , 2012 .

[62]  Chitta Saha,et al.  Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion , 2008, Smart Materials and Structures.

[63]  Chris Van Hoof,et al.  Corrigendum: Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator , 2009 .

[64]  Philip H. W. Leong,et al.  A Laser-micromachined Multi-modal Resonating Power Transducer for Wireless Sensing Systems , 2001 .

[65]  Wen J. Li,et al.  Development of an AA size energy transducer with micro resonators , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[66]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[67]  Zhong Lin Wang,et al.  Effective energy storage from a triboelectric nanogenerator , 2016, Nature Communications.

[68]  Ali Muhtaroglu,et al.  An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS , 2012 .

[69]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[70]  Tao Jiang,et al.  A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement , 2016, Nanotechnology.

[71]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[72]  Weiqing Yang,et al.  Harvesting energy from the natural vibration of human walking. , 2013, ACS nano.

[73]  J. Park,et al.  Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration , 2017 .

[74]  Tao Dong,et al.  Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations , 2011 .

[75]  Tao Han,et al.  A high-sensitivity pressure sensor based on surface transverse wave , 2012 .

[76]  Jianjun Luo,et al.  Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator. , 2017, ACS nano.

[77]  Gopinath Reddy Penamalli,et al.  An efficient vibration energy harvester with a multi-mode dynamic magnifier , 2011 .

[78]  Xue Wang,et al.  A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems , 2017 .

[79]  Pukar Maharjan,et al.  An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications , 2018, Nano Energy.

[80]  R. Horn,et al.  Contact Electrification and Adhesion Between Dissimilar Materials , 1992, Science.

[81]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[82]  Zhong Lin Wang,et al.  Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. , 2013, ACS nano.

[83]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[84]  Gang Li,et al.  Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure , 2015 .

[85]  Miah A. Halim,et al.  A non-resonant, frequency up-converted electromagnetic energy harvester from human-body-induced vibration for hand-held smart system applications , 2014 .

[86]  Chenyang Xue,et al.  A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting , 2014, Nanomaterials.

[87]  M. S. Rasel,et al.  A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application , 2017 .

[88]  S. Jo,et al.  Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor , 2017 .

[89]  Steven W. Shaw,et al.  Forced vibrations of a beam with one-sided amplitude constraint: Theory and experiment , 1985 .

[90]  Miah A. Halim,et al.  Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth , 2016 .

[91]  Saibal Roy,et al.  Vibration based electromagnetic micropower generator on silicon , 2006 .

[92]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[93]  Zhong Lin Wang,et al.  Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , 2017, Science Advances.

[94]  In-Ho Kim,et al.  Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable , 2013 .

[95]  Salauddin,et al.  Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration , 2018, Nano Energy.

[96]  Jan R. Wright,et al.  Design of a multiresonant beam for broadband piezoelectric energy harvesting , 2010 .

[97]  M. Rajarathinam,et al.  Energy generation in a hybrid harvester under harmonic excitation , 2018 .

[98]  Wei-Hsin Liao,et al.  Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments , 2017 .

[99]  David Espalin,et al.  Multi-material, multi-technology FDM: exploring build process variations , 2014 .

[100]  Manoj Kumar Gupta,et al.  Hydrophobic Sponge Structure‐Based Triboelectric Nanogenerator , 2014, Advanced materials.

[101]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[102]  Jae Yeong Park,et al.  Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array , 2017 .

[103]  Wook Kim,et al.  Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system , 2017 .

[104]  Yu-Cheng Lin,et al.  Flexible Electronics Sensors for Tactile Multi-Touching , 2009, Sensors.

[105]  Bill J. Van Heyst,et al.  A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms , 2015 .

[106]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[107]  Sihong Wang,et al.  In Vivo Powering of Pacemaker by Breathing‐Driven Implanted Triboelectric Nanogenerator , 2014, Advanced materials.

[108]  Yonggang Jiang,et al.  Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets , 2011 .

[109]  Zhong Lin Wang,et al.  Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized‐Air Injection: Methodology and Theoretical Understanding , 2014, Advanced materials.

[110]  Won Jun Choi,et al.  3D printed noise-cancelling triboelectric nanogenerator , 2017 .

[111]  Yunhui Huang,et al.  Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films , 2017 .

[112]  Sung-hoon Ahn,et al.  A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. , 2012, Nature materials.

[113]  Keren Dai,et al.  Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics. , 2017, ACS nano.

[114]  Qiongfeng Shi,et al.  Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism , 2017, Scientific Reports.

[115]  Erjun Liang,et al.  Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires , 2015 .

[116]  Jianan Song,et al.  High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure , 2018, Nano Energy.

[117]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[118]  Zhong Lin Wang,et al.  Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics , 2013 .

[119]  Jae Yeong Park,et al.  Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester , 2015 .

[120]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[121]  Myeong-Lok Seol,et al.  Nature-replicated nano-in-micro structures for triboelectric energy harvesting. , 2014, Small.

[122]  David P. Arnold,et al.  Spherical, rolling magnet generators for passive energy harvesting from human motion , 2009 .

[123]  Haibing Hu,et al.  Hybrid Electromagnetic and Triboelectric Nanogenerators with Multi-Impact for Wideband Frequency Energy Harvesting , 2017 .

[124]  J. Y. Park,et al.  A Hybrid Electromagnetic–Triboelectric Energy Harvester Using a Dual Halbach Magnet Array Powered by Human‐Body‐Induced Motion , 2018 .

[125]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.

[126]  Dibin Zhu,et al.  Temperature Dependence of a Magnetically Levitated Electromagnetic Vibration Energy Harvester , 2017 .

[127]  Tuna Balkan,et al.  An electromagnetic micro power generator for wideband environmental vibrations , 2008 .

[128]  Andreas Vogl,et al.  Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs , 2010 .

[129]  Chengkuo Lee,et al.  An Intermittent Self-Powered Energy Harvesting System From Low-Frequency Hand Shaking , 2015, IEEE Sensors Journal.

[130]  Long Lin,et al.  Theory of Sliding‐Mode Triboelectric Nanogenerators , 2013, Advanced materials.

[131]  Dibin Zhu,et al.  Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator , 2010 .

[132]  H. Fan,et al.  Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. , 2016, ACS applied materials & interfaces.

[133]  Jun Chen,et al.  Harmonic‐Resonator‐Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self‐Powered Active Vibration Sensor , 2013, Advanced materials.

[134]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[135]  C. Livermore,et al.  Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation , 2011 .

[136]  Xue Wang,et al.  Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch. , 2015, ACS nano.

[137]  Byung-Sung Kim,et al.  Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film , 2015 .

[138]  Jae Yeong Park,et al.  Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball , 2015 .

[139]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[140]  Zhongqiu Wang,et al.  Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy , 2018 .

[141]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[142]  Paul M. Weaver,et al.  Measurement techniques for piezoelectric nanogenerators , 2013 .

[143]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[144]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[145]  Zhong Lin Wang,et al.  Theoretical Study of Rotary Freestanding Triboelectric Nanogenerators , 2015 .

[146]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[147]  Weiqing Yang,et al.  3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy , 2014 .

[148]  Jae Yeong Park,et al.  Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation , 2014 .

[149]  Tao Guo,et al.  The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor , 2017 .

[150]  Fan Yang,et al.  In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. , 2016, ACS nano.

[151]  Seok-Hee Lee,et al.  Representation of surface roughness in fused deposition modeling , 2009 .

[152]  Li Zheng,et al.  Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. , 2015, ACS nano.

[153]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[154]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[155]  Mehmet Girayhan Say,et al.  A Motion‐ and Sound‐Activated, 3D‐Printed, Chalcogenide‐Based Triboelectric Nanogenerator , 2015, Advanced materials.

[156]  R. Horn,et al.  Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions , 1993, Nature.

[157]  Bojing Shi,et al.  A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator , 2016 .

[158]  Yongan Huang,et al.  Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability , 2016, Advanced materials.

[159]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[160]  Yuan Lin,et al.  Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator , 2013, Nano Research.

[161]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[162]  Long Lin,et al.  Self-powered magnetic sensor based on a triboelectric nanogenerator. , 2012, ACS nano.

[163]  Jongmin Lee,et al.  Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts , 2017 .

[164]  C. Pereira,et al.  Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[165]  Jongbaeg Kim,et al.  Triboelectric energy harvester using frequency up-conversion to generate from extremely low frequency strain inputs , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[166]  Wenzhuo Wu,et al.  Controlled Growth of Aligned Polymer Nanowires , 2009 .

[167]  Zhong Lin Wang,et al.  Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source , 2015 .

[168]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[169]  Sang-Jae Kim,et al.  Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. , 2015, ACS applied materials & interfaces.

[170]  Ji Hoon Kim,et al.  Reverse‐Micelle‐Induced Porous Pressure‐Sensitive Rubber for Wearable Human–Machine Interfaces , 2014, Advanced materials.

[171]  Qi Xu,et al.  Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting , 2013 .

[172]  Zhou Li,et al.  Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems , 2017, Advanced science.

[173]  Wei Wang,et al.  Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. , 2013, Nano letters.

[174]  Miah A. Halim,et al.  A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion , 2016 .

[175]  J. Y. Park,et al.  A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array , 2016 .

[176]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[177]  Benjamin M Wu,et al.  Recent advances in 3D printing of biomaterials , 2015, Journal of Biological Engineering.

[178]  Simiao Niu,et al.  Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. , 2014, Nano letters.

[179]  Mikhail Shamonin,et al.  Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers , 2017 .

[180]  Jin-Woo Han,et al.  Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package , 2016 .

[181]  Jian Shi,et al.  PVDF microbelts for harvesting energy from respiration , 2011 .

[182]  Zhong Lin Wang,et al.  Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. , 2017, ACS nano.

[183]  Long Lin,et al.  Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators , 2014 .

[184]  K. Najafi,et al.  Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications , 2008, IEEE Sensors Journal.

[185]  Chengkuo Lee,et al.  Electromagnetic energy harvesting from vibrations of multiple frequencies , 2009 .

[186]  Pukar Maharjan,et al.  High performance human-induced vibration driven hybrid energy harvester for powering portable electronics , 2018 .

[187]  Shengnan Lu,et al.  Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating , 2015, Scientific Reports.

[188]  John Ojur Dennis,et al.  A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment , 2013 .

[189]  Ting Quan,et al.  Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy , 2015, Nano Research.

[190]  Jie Chen,et al.  A Triboelectric Generator Based on Checker‐Like Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions , 2015 .

[191]  B. Grzybowski,et al.  The Mosaic of Surface Charge in Contact Electrification , 2011, Science.

[192]  Eric M. Yeatman,et al.  A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications , 2014 .

[193]  M. Salauddin,et al.  A low frequency vibration driven, miniaturized and hybridized electromagnetic and triboelectric energy harvester using dual Halbach array , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[194]  Zhong Lin Wang,et al.  Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. , 2013, ACS nano.