Observer Design for Nonlinear Systems with Implicit Output

This paper investigates the problem of observer design for nonlinear systems when only a transformed output is available for measurement. More precisely, we first assume that there exists an observer design that requires the output of the system. We then suppose that this disturbed output is only available under a transformation and we propose a new observer design. We establish small-gain type conditions ensuring the asymptotic convergence of the proposed observer and we provide an illustration example.

[1]  J. Cronin Ordinary Differential Equations: Introduction and Qualitative Theory, Third Edition , 1994 .

[2]  J. Gauthier,et al.  Deterministic Observation Theory and Applications , 2001 .

[3]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[4]  Madiha Nadri Wolf,et al.  Optimal observer design for disturbed state affine systems , 2018, 2018 Annual American Control Conference (ACC).

[5]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[6]  H. Khalil,et al.  High-Gain Observers in the Presence of Measurement Noise: A Switched-Gain Approach , 2008 .

[7]  G. Bornard,et al.  Regularly persistent observers for bilinear systems , 1989 .

[8]  Christopher M. Kellett,et al.  A compendium of comparison function results , 2014, Math. Control. Signals Syst..

[9]  Xiaoming Hu,et al.  Observers for systems with implicit output , 2000, IEEE Trans. Autom. Control..

[10]  Eduardo Sontag,et al.  On Characterizations of Input-to-State Stability with Respect to Compact Sets , 1995 .

[11]  Zhong-Ping Jiang,et al.  Quelques resultats de stabilisation robuste. applications à la commande , 1993 .

[12]  Sophie Tarbouriech,et al.  Observer-based control for linear systems with quantized output , 2014, 2014 European Control Conference (ECC).

[13]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[14]  D. Liberzon,et al.  Observer-based quantized output feedback control of nonlinear systems , 2007, 2007 Mediterranean Conference on Control & Automation.

[15]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[16]  Lorenzo Marconi,et al.  Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems , 2005 .

[17]  Hassan Hammouri,et al.  Observer Synthesis for a Class of Nonlinear Control Systems , 1996, Eur. J. Control.

[18]  Nikolaos Bekiaris-Liberis,et al.  Nonlinear Control Under Nonconstant Delays , 2013, Advances in design and control.

[19]  Kevin Fiedler,et al.  Robust Nonlinear Control Design State Space And Lyapunov Techniques , 2016 .

[20]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[21]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[22]  Martin Guay,et al.  Observer Linearization by Output Diffeomorphism and Output-Dependent Time-Scale Transformations , 2001 .

[23]  C. D. Silva Sensors and Actuators , 2007 .

[24]  G. Yin,et al.  System Identification with Quantized Observations , 2010 .

[25]  Tor Arne Johansen,et al.  Observers for interconnected nonlinear and linear systems , 2012, Autom..

[26]  Prashanth Krishnamurthy,et al.  Modeling and Adaptive Nonlinear Control of Electric Motors , 2003 .

[27]  J.P. Hespanha,et al.  State Estimation for Systems with Implicit Outputs for the Integration of Vision and Inertial Sensors , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.