Searching for Sources from a Fixed Point in a Virtual Auditory Environment

Interaction between the listener and their environment in a spatial auditory display plays an important role in creating better situational awareness, resolving front/back and up/down confusions, and improving localization. Prior studies with 6DOF interaction suggest that using either a head tracker or a mouse-driven interface yields similar performance during a navigation and search task in a virtual auditory environment. In this paper, we present a study that compares listener performance in a virtual auditory environment under a static mode condition, and two dynamic conditions (head tracker and mouse) using orientation-only interaction. Results reveal tradeoffs among the conditions and interfaces. While the fastest response time was observed in the static mode, both dynamic conditions resulted in significantly reduced front/back confusions and improved localization accuracy. Training effects and search strategies are discussed.