Energy on spheres and discreteness of minimizing measures

In the present paper we study the minimization of energy integrals on the sphere with a focus on an interesting clustering phenomenon: for certain types of potentials, optimal measures are discrete or are supported on small sets. In particular, we prove that the support of any minimizer of the $p$-frame energy has empty interior whenever $p$ is not an even integer. A similar effect is also demonstrated for energies with analytic potentials which are not positive definite. In addition, we establish the existence of discrete minimizers for a large class of energies, which includes energies with polynomial potentials.

[1]  F. Finster,et al.  Singular support of minimizers of the causal variational principle on the sphere , 2018, Calculus of Variations and Partial Differential Equations.

[2]  Alan F. Karr,et al.  Extreme Points of Certain Sets of Probability Measures, with Applications , 1983, Math. Oper. Res..

[3]  R. G. Douglas,et al.  On extremal measures and subspace density. , 1964 .

[4]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[5]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[6]  H. Richter Parameterfreie Abschätzung und Realisierung von Erwartungswerten , 1957 .

[7]  T. Kolokolnikov,et al.  PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS , 2012 .

[8]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[9]  Gerhard Winkler,et al.  Extreme Points of Moment Sets , 1988, Math. Oper. Res..

[10]  K. Kang,et al.  Uniqueness and characterization of local minimizers for the interaction energy with mildly repulsive potentials , 2019, Calculus of Variations and Partial Differential Equations.

[11]  J. Carrillo,et al.  Geometry of minimizers for the interaction energy with mildly repulsive potentials , 2016, 1607.08660.

[12]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[13]  Douglas P Hardin,et al.  Discrete Energy on Rectifiable Sets , 2019, Springer Monographs in Mathematics.

[14]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[15]  W. Rogosinski Moments of non-negative mass , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  A. Bertozzi,et al.  Stability of ring patterns arising from two-dimensional particle interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[18]  F. Finster,et al.  On the Support of Minimizers of Causal Variational Principles , 2010, 1012.1589.

[19]  Stefan Rolewicz,et al.  On a problem of moments , 1968 .

[20]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[21]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[22]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[23]  Robert J. McCann,et al.  Isodiametry, Variance, and Regular Simplices from Particle Interactions , 2021 .

[24]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[25]  Mean value extension theorems and microlocal analysis , 2003 .

[26]  A. A. Makhnev On the Nonexistence of Strongly Regular Graphs with Parameters (486, 165, 36, 66) , 2002 .

[27]  M. Ehler,et al.  Minimization of the probabilistic p-frame potential , 2010, 1101.0140.

[28]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[29]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[30]  R. Horn,et al.  On fractional Hadamard powers of positive definite matrices*1, *2 , 1977 .

[31]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[32]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[33]  V M Sidel'nikov NEW BOUNDS FOR DENSEST PACKING OF SPHERES IN n-DIMENSIONAL EUCLIDEAN SPACE , 1974 .

[34]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[35]  Ryan Matzke,et al.  Optimal measures for $p$-frame energies on spheres , 2019, Revista Matemática Iberoamericana.

[36]  D. Bilyk,et al.  On the Fejes Tóth problem about the sum of angles between lines , 2018, Proceedings of the American Mathematical Society.

[37]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[38]  L. Tóth,et al.  Über eine Punktverteilung auf der Kugel , 1959 .

[39]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[40]  Antonin Chambolle,et al.  On Representer Theorems and Convex Regularization , 2018, SIAM J. Optim..

[41]  D. Bilyk,et al.  Geodesic distance Riesz energy on the sphere , 2016, Transactions of the American Mathematical Society.

[42]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[43]  Blake C. Stacey Equiangular Lines , 2021, A First Course in the Sporadic SICs.

[44]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[45]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[46]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[47]  J. A. Carrillo,et al.  Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability , 2011, 1109.5258.

[48]  Paul C. Rosenbloom Quelques classes de problèmes extrémaux. II , 1951 .

[49]  Michael Unser,et al.  Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization , 2016, SIAM Rev..

[50]  D. Slepčev,et al.  Nonlocal Interaction Equations in Environments with Heterogeneities and Boundaries , 2015 .