Incorporating Inequality Constraints in the Spectral Bundle Method
暂无分享,去创建一个
[1] Jochem Zowe,et al. A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..
[2] Alexander Shapiro,et al. On Eigenvalue Optimization , 1995, SIAM J. Optim..
[3] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[4] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[5] C. Helmberg,et al. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .
[6] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[7] Krzysztof C. Kiwiel,et al. Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..
[8] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[9] Xiong Zhang,et al. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..
[10] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[11] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[12] Satissed Now Consider. Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .
[13] Gene H. Golub,et al. Matrix computations , 1983 .