Elimination of silicon gas phase nucleation using tetrafluorosilane (SiF4) precursor for high quality thick silicon carbide (SiC) homoepitaxy

[1]  Giuseppe Pistone,et al.  High growth rate process in a SiC horizontal CVD reactor using HCl , 2006 .

[2]  M. Masi,et al.  Silicon carbide growth mechanisms from SiH4, SiHCl3 and nC3H8 , 2005 .

[3]  T. Sudarshan,et al.  Comparison of 4H Silicon Carbide Epitaxial Growths at Various Growth Pressures Using Dicholorosilane and Silane Gases , 2012 .

[4]  K. Abe,et al.  Growth and Characterization of SiC Films by Hot-Wire Chemical Vapor Deposition at Low Substrate Temperature Using SiF4/CH4/H2 Mixture , 2008 .

[5]  Y. Makarov,et al.  Modeling of gas phase nucleation during silicon carbide chemical vapor deposition , 2000 .

[6]  Giuseppe Pistone,et al.  4H-SiC epitaxial layer growth by trichlorosilane (TCS) , 2008 .

[7]  J. Redwing,et al.  Growth of thick p-type SiC epitaxial layers by halide chemical vapor deposition , 2008 .

[8]  P. W. Wilson,et al.  Silicon difluoride, a carbene analog - Its reactions and properties , 1971 .

[9]  A. Henry,et al.  Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS) , 2007 .

[10]  A. Henry,et al.  High Growth Rate of 4H-SiC Epilayers on On-Axis Substrates with Different Chlorinated Precursors , 2010 .

[11]  A. Burk,et al.  The role of excess silicon and in situ etching on 4HSiC and 6HSiC epitaxial layer morphology , 1996 .

[12]  A. K. Barua,et al.  Polycrystalline silicon carbide films deposited by low‐power radio‐frequency plasma decomposition of SiF4‐CF4‐H2 gas mixtures , 1991 .

[13]  J. Palmour,et al.  SiC Epitaxial Layer Growth in a 6x150 mm Warm-Wall Planetary Reactor , 2012 .

[14]  T. Sudarshan,et al.  Behavior of Particles in the Growth Reactor and their Effect on Silicon Carbide Epitaxial Growth , 2012 .

[15]  Iftekhar Chowdhury,et al.  High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor , 2011 .

[16]  Yaroslav Koshka,et al.  Chloride-based CVD growth of silicon carbide for electronic applications. , 2012, Chemical reviews.

[17]  Hiroshi Harima,et al.  Raman Investigation of SiC Polytypes , 1997 .

[18]  Y. Shishkin,et al.  High growth rates (>30 μm/h) of 4H–SiC epitaxial layers using a horizontal hot-wall CVD reactor , 2005 .

[19]  Siva Kotamraju,et al.  Use of chlorinated carbon and silicon precursors for epitaxial growth of 4H‐SiC at very high growth rates , 2009 .

[20]  G. Bruno,et al.  Plasma deposition of amorphous SiC:H,F alloys from SiF4‐CH4‐H2 mixtures under modulated conditions , 1996 .

[21]  T. Kimoto,et al.  Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition , 2007 .

[22]  H. Tsuchida,et al.  Development of 4H–SiC Epitaxial Growth Technique Achieving High Growth Rate and Large-Area Uniformity , 2008 .

[23]  J. Margrave,et al.  Silicon-Fluorine Chemistry. I. Silicon Difluoride and the Perfluorosilanes1 , 1965 .

[24]  B. V. Shanabrook,et al.  Lifetime-limiting defects in n− 4H-SiC epilayers , 2006 .

[25]  J. Perrin,et al.  High-speed homoepitaxy of SiC from methyltrichlorosilane by chemical vapor deposition , 2005 .

[26]  J. Yoshiyama,et al.  Vapor etching of ion tracks in fused silica , 2002 .

[27]  Y. Makarov,et al.  Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth , 2001 .

[28]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .