Hydrogen generation at irradiated oxide semiconductor–solution interfaces

This review focuses on the use of inorganic oxide semiconductors for the photoassisted generation of hydrogen from water. Representative studies spanning approximately three decades are included in this review. The topics covered include a discussion of the types of water photosplitting approaches, an ideal photoelectrolysis system, an examination of why oxide semiconductors are attractive for this application, a review of both classical and more recent studies on titanium dioxide, tungsten trioxide, and other binary metal oxides, perovskites and other ternary oxides, tantalates and niobates, miscellaneous multinary oxides, semiconductor alloys and mixed semiconductor composites, and twin-photosystem configurations for water splitting.

[1]  Ming X. Tan,et al.  Principles and Applications of Semiconductor Photoelectrochemistry. , 1994 .

[2]  P. A. Cox The Electronic Structure And Chemistry Of Solids , 1987 .

[3]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[4]  H. Tien,et al.  Photoelectrochemical cell with semiconductor septum electrode , 1988 .

[5]  H. Tuller,et al.  Models for the Photoelectrolytic Decomposition of Water at Semiconducting Oxide Anodes , 1980 .

[6]  J. G. Mavroides,et al.  Surface photovoltage experiments on SrTiO3 electrodes , 1978 .

[7]  Stephen J. Fonash,et al.  太阳电池器件物理 = Solar cell device physics , 1982 .

[8]  Yoshihiro Nakato,et al.  The Quantum Yield of Photolysis of Water on TiO2 Electrodes , 1975 .

[9]  A. Kudo,et al.  Energy structure and photocatalytic activity for water splitting of Sr2(Ta1−XNbX)2O7 solid solution , 2001 .

[10]  H. Tamura,et al.  The quantum yields of photoelectric decomposition of water at TiO2 anodes and p-type GaP cathodes , 1977 .

[11]  M Yagi,et al.  Molecular catalysts for water oxidation. , 2001, Chemical reviews.

[12]  H. Onishi,et al.  Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2: A Time-Resolved Infrared Absorption Study , 2001 .

[13]  A. Kudo,et al.  Water Splitting into H2 and O2 over Cs2Nb4O11 Photocatalyst. , 2005 .

[14]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[15]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[16]  M. Graetzel,et al.  Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light , 1981 .

[17]  Bruce A. Parkinson,et al.  Combinatorial Approach to Identification of Catalysts for the Photoelectrolysis of Water , 2005 .

[18]  P. Maruthamuthu,et al.  Visible light induced hydrogen production with Cu(II)/Bi2O3 and Pt/Bi2O3/RuO2 from aqueous methyl viologen solution , 1993 .

[19]  R. Wilson Electron transfer processes at the semiconductor-electrolyte interface , 1980 .

[20]  J. Augustynski,et al.  Spectral Photoresponses of Carbon-Doped TiO2 Film Electrodes , 2004 .

[21]  Jinhua Ye,et al.  Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst , 2003 .

[22]  P. Maruthamuthu,et al.  Photogeneration of hydrogen using visible light with undoped/doped α-Fe2O3 in the presence of methyl viologen , 1995 .

[23]  J. Doumerc,et al.  CuMnO2, a novel hydrogen photoevolution catalyst , 2003 .

[24]  A. Kudo,et al.  Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates , 2003 .

[25]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[26]  D. B. Rogers,et al.  Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds , 1971 .

[27]  P. Salvador,et al.  The generation of hydrogen peroxide during water photoelectrolysis at n-titanium dioxide , 1984 .

[28]  Ashutosh Kumar Singh,et al.  Studies on PV assisted PEC solar cells for hydrogen production through photoelectrolysis of water , 2002 .

[29]  K. Domen,et al.  Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts , 1986 .

[30]  M. P. Dare-Edwards,et al.  Evaluation of p-type PdO as a photocathode in water photoelectrolysis , 1984 .

[31]  H. Yoneyama,et al.  An Effect of Heat-treatment on the Activity of Titanium Dioxide Film Electrodes for Photo-sensitized Oxidation of Water , 1977 .

[32]  K. Domen,et al.  Study of the photocatalytic decomposition of water vapor over a nickel(II) oxide-strontium titanate (SrTiO3) catalyst , 1982 .

[33]  A. Kudo,et al.  Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts , 2003 .

[34]  Y. Nakato,et al.  Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4 , 1995 .

[35]  E. Stathatos,et al.  Study of the Efficiency of Visible-Light Photocatalytic Degradation of Basic Blue Adsorbed on Pure and Doped Mesoporous Titania Films , 2001 .

[36]  D. B. Rogers,et al.  Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure , 1971 .

[37]  K. Domen,et al.  Photocatalytic decomposition of liquid water on a NiOSrTiO3 catalyst , 1982 .

[38]  W. Brattain,et al.  Experiments on the interface between germanium and an electrolyte , 1955 .

[39]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[40]  Y. Nakato,et al.  Photo- and electroluminescence spectra from an n-titanium dioxide semiconductor electrode as related to the intermediates of the photooxidation reaction of water , 1983 .

[41]  M. Wrighton Photoelectrochemistry: Inorganic photochemistry at semiconductor electrodes , 1983 .

[42]  J. R. Darwent,et al.  Methyl orange as a probe for photooxidation reactions of colloidal titanium dioxide , 1984 .

[43]  D. Ginley,et al.  The photoelectrolysis of water using iron titanate anodes , 1977 .

[44]  Photoelectrochemical decomposition of water utilizing monolithic tandem cells , 1998 .

[45]  H. Arakawa,et al.  Oxide semiconductor materials for solar light energy utilization , 2000 .

[46]  Krishnan Rajeshwar,et al.  Materials aspects of photoelectrochemical energy conversion , 1985 .

[47]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[48]  K. Domen,et al.  Photocatalytic activities of TiO2 loaded with NiO , 1987 .

[49]  Kazunori Sato,et al.  Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water , 1990 .

[50]  K. Domen,et al.  Recent progress of photocatalysts for overall water splitting , 1998 .

[51]  K. Domen,et al.  Mesoporous Tantalum Oxide. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition , 2001 .

[52]  Steven H. Szczepankiewicz,et al.  Slow Surface Charge Trapping Kinetics on Irradiated TiO2 , 2002 .

[53]  J. White,et al.  Photodecomposition of water over Pt/TiO2 catalysts , 1980 .

[54]  J. Goodenough,et al.  Photoresponse of n‐type semiconductor NiTiO3 , 1982 .

[55]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[56]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[57]  M. Hepel,et al.  Bicomponent WO 3 / TiO2 Films as Photoelectrodes , 1999 .

[58]  Michael Grätzel,et al.  Photochemical cleavage of water by photocatalysis , 1981, Nature.

[59]  Jinhua Ye,et al.  Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M=Sr, Ba) , 2003 .

[60]  J. Carey,et al.  Intensity effects in the electrochemical photolysis of water at the TiO2 electrode , 1976, Nature.

[61]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[62]  M. Grätzel,et al.  Enhancement of photocatalytic oxygen evolution in aqueous TiO2 suspensions by removal of surface-OH groups , 1984 .

[63]  A. Kudo,et al.  New In2O3(ZnO)m Photocatalysts with Laminal Structure for Visible Light-induced H2 or O2 Evolution from Aqueous Solutions Containing Sacrificial Reagents , 1998 .

[64]  J. Desplat Near-uv photon efficiency in a TiO2 electrode - Application to hydrogen production from solar energy , 1976 .

[65]  R. D. Nasby,et al.  Photoassisted electrolysis of water using a BaTiO3 electrode , 1976 .

[66]  M. Graetzel,et al.  Energy Resources through Photochemistry and Catalysis , 1983 .

[67]  A. Kudo Photocatalyst Materials for Water Splitting , 2003 .

[68]  Paul A. Connor,et al.  Infrared Spectroscopy of the TiO2/Aqueous Solution Interface , 1999 .

[69]  G. Somorjai,et al.  The preparation and selected properties of Mg-doped p-type iron oxide as a photocathode for the photoelectrolysis of water using visible light , 1983 .

[70]  J. Lehn,et al.  Water Photolysis by UV Irradiation of Rhodium Loaded Strontium Titanate Catalysts. Relation between Catalytic Activity and Nature of the Deposit from Combined Photolysis and ESCA Studies , 1982 .

[71]  Amal K. Ghosh,et al.  Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes , 1977 .

[72]  David L. Morse,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[73]  H. Yoneyama,et al.  Influence of the reactivity of reducing agents on anodic photocurrents at TiO2 electrodes , 1981 .

[74]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[75]  A. Kudo,et al.  Water Splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity , 2000 .

[76]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[77]  Akira Fujishima,et al.  Hydrogen Production under Sunlight with an Electrochemical Photocell , 1975 .

[78]  K. Domen,et al.  A novel series of photocatalysts with an ion-exchangeable layered structure of niobate , 1990 .

[79]  A. Hamnett Chapter 2 Semiconductor Electrochemistry , 1988 .

[80]  Hironori Arakawa,et al.  A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis , 2002 .

[81]  S. M. Rogers,et al.  Adolescent sexual behavior, drug use, and violence: increased reporting with computer survey technology. , 1998, Science.

[82]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[83]  W. Ingler,et al.  Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination , 2004 .

[84]  Kazunori Sato,et al.  Reduction and oxidation of BaTi4O9 with a pentagonal prism tunnel structure , 1997 .

[85]  Amit Kumar,et al.  The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts , 1993 .

[86]  G. Somorjai,et al.  Photodissociation of water by p- and n-type polycrystalline iron oxides by using visible light (, 1982, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Boddy Oxygen Evolution on Semiconducting TiO2 , 1968 .

[88]  Arthur B. Ellis,et al.  Teaching General Chemistry: A Materials Science Companion , 1993 .

[89]  Y. Nakato,et al.  Luminescence spectra from n-type titanium dioxide and n-type strontium titanate (SrTiO3) semiconductor electrodes and those doped with transition-metal oxides as related with intermediates of the photooxidation reaction of water , 1986 .

[90]  A. Kudo,et al.  Water Splitting into H 2 and O 2 on Alkali Tantalate Photocatalysts ATaO 3 (A = Li, Na, and K) , 2001 .

[91]  N. Lewis Frontiers of research in photoelectrochemical solar energy conversion , 2001 .

[92]  Akira Fujishima,et al.  Photoinduced Surface Reactions on TiO2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity , 2000 .

[93]  A. Kudo,et al.  Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. , 2005, Physical chemistry chemical physics : PCCP.

[94]  C. Stalder,et al.  Photoassisted Oxidation of Water at Beryllium‐Doped Polycrystalline TiO2 Electrodes , 1979 .

[95]  A. Kudo,et al.  H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and d0 Transition Metal Ions , 1999 .

[96]  Stuart Licht,et al.  Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion , 2001 .

[97]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[98]  Hideki Kato,et al.  Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting , 2004 .

[99]  E. Walsh,et al.  Improved solar energy conversion efficiencies for the photocatalytic production of hydrogen via TiO2 semiconductor electrodes , 1976 .

[100]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[101]  M. Anpo,et al.  Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts , 2002 .

[102]  T. Yamaki,et al.  Formation of TiO2−xFx compounds in fluorine-implanted TiO2 , 2002 .

[103]  K. Domen,et al.  New aspects of heterogeneous photocatalysts for water decomposition , 2001, Korean Journal of Chemical Engineering.

[104]  C. Grimes,et al.  A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays , 2005 .

[105]  J. Mbindyo,et al.  Pollutant Decomposition with Simultaneous Generation of Hydrogen and Electricity in a Photogalvanic Reactor , 1997 .

[106]  F. A. Benko,et al.  p‐Type NiO as a Photoelectrolysis Cathode , 1981 .

[107]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[108]  D. Schleich,et al.  Semiconducting properties of barium titanate and iron substituted barium titanate , 1977 .

[109]  Kazunori Sato,et al.  Dispersion of ruthenium oxide on barium titanates (Ba6Ti17O40,Ba4Ti13O30,BaTi4O9and Ba2Ti9O20)and photocatalytic activity for water decomposition , 1998 .

[110]  Tijana Rajh,et al.  Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. , 2005, The journal of physical chemistry. B.

[111]  H. Morisaki,et al.  Anomalous photoresponse of n‐TiO2 electrode in a photoelectrochemical cell , 1977 .

[112]  A. Bard,et al.  Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes , 1978 .

[113]  Shinri Sato Photoelectrochemical preparation of Pt/TiO2 catalysts , 1985 .

[114]  Carl A. Koval,et al.  Electron transfer at semiconductor electrode-liquid electrolyte interfaces , 1992 .

[115]  R. D. Nasby,et al.  Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes , 1976 .

[116]  P. D. Jongh,et al.  Cu2O: a catalyst for the photochemical decomposition of water? , 1999 .

[117]  M. Kakihana,et al.  Preparation of a high active photocatalyst, K_2La_2Ti_3O_10, by polymerized complex method and its photocatalytic activity of water splitting , 1998 .

[118]  L. D. Haart,et al.  The sensitization of SrTiO3 photoanodes for visible light irradiation , 1981 .

[119]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[120]  Nick Serpone,et al.  Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer , 1984 .

[121]  A. Wold,et al.  Preparation and photoelectrolytic behavior of the systems WO/sub 3-x/ and WO/sub 3-x/F/sub x/. [Can be used for the photoelectrolysis of water] , 1978 .

[122]  Hideo Tamura,et al.  A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction , 1975 .

[123]  J. S. Lee,et al.  Mg-Doped WO3 as a Novel Photocatalyst for Visible Light-Induced Water Splitting , 2002 .

[124]  Koji Takeuchi,et al.  Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal , 2000 .

[125]  Akihiko Kudo Development of Photocatalyst Materials for Water Splitting with the Aim at Photon Energy Conversion , 2001 .

[126]  J. F. Houlihan,et al.  Doped polycrystalline TiO2 electrodes for the photo-assisted electrolysis of water , 1978 .

[127]  C. Perkins,et al.  Electron Source in Photoinduced Hydrogen Production on Pt-supported TiO Particles , 2001 .

[128]  D. Ginley,et al.  Photoelectrolysis with YFeO3 electrodes , 1977 .

[129]  Krishnan Rajeshwar,et al.  Energy conversion in photoelectrochemical systems — a review , 1978 .

[130]  Ruth Shinar,et al.  Photoactivity of doped αFe2O3 electrodes , 1982 .

[131]  N. Saito,et al.  A New Photocatalyst of RuO2-loaded PbWO4 for Overall Splitting of Water , 2004 .

[132]  M. Matsumura,et al.  Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution , 2001 .

[133]  Juan Bisquert,et al.  Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline TiO2/Electrolyte System by Impedance Methods , 2002 .

[134]  Hyunwoong Park,et al.  Synthesis of new visible light active photocatalysts of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M' = Nb, Ta): a band gap engineering strategy based on electronegativity of a metal component. , 2005, The journal of physical chemistry. B.

[135]  H. Kung,et al.  SEMICONDUCTING OXIDE ANODES IN PHOTOASSISTED ELECTROLYSIS OF WATER. , 1977 .

[136]  K. Gurunathan,et al.  Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution , 1997 .

[137]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[138]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. IV. Prolonged oxidation kinetics and chemical diffusion. , 2006, The journal of physical chemistry. B.

[139]  Y. Oosawa Photocatalytic hydrogen evolution from an aqueous hydrazine solution , 1982 .

[140]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[141]  H. Tada,et al.  A Promoting Effect of NH4F Addition on the Photocatalytic Activity of Sol-Gel TiO2 Films , 1998 .

[142]  J. Goodenough,et al.  Photoelectrochemical properties of n‐type NiTiO3 , 1982 .

[143]  K. Hashimoto,et al.  Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. , 2003, Chemical communications.

[144]  Yasunobu Inoue,et al.  Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water , 1991 .

[145]  K. Domen,et al.  Photocatalytic decomposition of water over a Ni-Loaded Rb4Nb6O17 catalyst , 1990 .

[146]  K. Domen,et al.  Mechanism of photocatalytic decomposition of water into H2 and O2 over NiOSrTiO3 , 1986 .

[147]  K. Gurunathan Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles , 2004 .

[148]  Hideki Kato,et al.  Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution , 1998 .

[149]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[150]  Barry G. Oliver,et al.  The Photochemical Treatment of Wastewater by Ultraviolet Irradiation of Semiconductors , 1980 .

[151]  J. Baltrus,et al.  Photoresponse of p-type zinc-doped iron(III) oxide thin films. , 2004, Journal of the American Chemical Society.

[152]  S. Ishikawa,et al.  Photoelectrochemical properties of TiO2 rutile microalloyed with 4d and 5d transition elements , 2000 .

[153]  Young Gul Kim,et al.  Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting , 1999 .

[154]  H. Arakawa,et al.  Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis , 1994 .

[155]  M. Halmann,et al.  Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V(II)-V(III) chloride redox system , 1983 .

[156]  G. Somorjai,et al.  Evidence for photodissociation of water vapor on reduced strontium titanate(111) surfaces in a high vacuum environment , 1981 .

[157]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. III. Equilibration kinetics and chemical diffusion. , 2006, Journal of Physical Chemistry B.

[158]  A. Kudo,et al.  Photocatalytic activities of noble metal ion doped SrTiO3under visible light irradiation , 2004 .

[159]  A. Mills,et al.  Photo-oxidation of water sensitized by WO3 powder , 1982 .

[160]  John B. Goodenough,et al.  Electrochemistry and photoelectrochemistry of iron(III) oxide , 1983 .

[161]  K. Rajeshwar,et al.  Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions , 1980 .

[162]  J. White,et al.  Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2. Technical report no. 19, 1 January-31 December 80 , 1980 .

[163]  Young Gul Kim,et al.  Photocatalytic water splitting over highly donor-doped (110) layered perovskites , 2000 .

[164]  H. Gerischer Solar photoelectrolysis with semiconductor electrodes , 1979 .

[165]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[166]  T. Kawai,et al.  Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces , 1980 .

[167]  F. Decker,et al.  Photoelectrolysis of Water with Natural Mineral TiO2 Rutile Electrodes , 1980 .

[168]  K. Domen,et al.  Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites , 1997 .

[169]  E. Sato,et al.  Photoelectrochemical Properties of Polycrystalline TiO2 Doped with 3d Transition Metals , 1981 .

[170]  H. Tien,et al.  Hydrogen production from water by semiconductor septum electrochemical photovoltaic cell using visible light , 1990 .

[171]  Gongxuan Lu,et al.  Hydrogen production by H2S photodecomposition on ZnFe2O4 catalyst , 1992 .

[172]  Hyuk-Nyun Kim,et al.  Layer-by-Layer Growth and Condensation Reactions of Niobate and Titanoniobate Thin Films , 1999 .

[173]  H. Kung,et al.  Photoelectrochemical and solid‐state properties of LuRhO3 , 1980 .

[174]  P. Maruthamuthu,et al.  Visible light-induced hydrogen production from water with Pt/Bi2O3/RuO2 in presence of electron relay and photosensitizer , 1994 .

[175]  Detlef W. Bahnemann,et al.  Charge Carrier Dynamics at TiO2 Particles: Reactivity of Free and Trapped Holes , 1997 .

[176]  G. Somorjai,et al.  PHOTOCATALYTIC AND PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS , 1980 .

[177]  T. Mallouk,et al.  Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles , 1991 .

[178]  Kazunari Domen,et al.  Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts , 1986 .

[179]  K. Domen,et al.  Visible light-induced photocatalytic behavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10 , 1993 .

[180]  E. Bilgen,et al.  Solar hydrogen from photovoltaic-electrolyzer systems , 2001 .

[181]  M. Matsumura,et al.  Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles , 1998 .

[182]  D. Haneman,et al.  Preparation of titanium dioxide films as solar photocatalysts , 1979 .

[183]  Yoshihiro Nakato,et al.  A composite semiconductor photoanode for water electrolysis , 1982, Nature.

[184]  H. Yoneyama,et al.  The role of surface flaws in competitive photoanodic processes at TiO2 electrodes , 1982 .

[185]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[186]  B. Kasemo,et al.  Comment on "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2" (II) , 2003, Science.

[187]  E. McFarland,et al.  Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides. , 2002, Journal of combinatorial chemistry.

[188]  K. Domen,et al.  H2 evolution caused by electron transfer between different semiconductors under visible light irradiation , 1988 .

[189]  M. Okuda,et al.  Photoeffects on Semiconductor Ceramics Electrodes , 1976 .

[190]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[191]  J. F. Dewald The charge distribution at the zinc oxide-electrolyte interface , 1960 .

[192]  J. Augustynski,et al.  Enhanced Visible Light Conversion Efficiency Using Nanocrystalline WO3 Films , 2001 .

[193]  Stuart Licht,et al.  Encyclopedia of Electrochemistry, Vol. 6: Semiconductor electrodes and Photoelectrochemistry , 2002 .

[194]  A. Bard,et al.  Semiconductor Electrodes: X . Photoelectrochemical Behavior of Several Polycrystalline Metal Oxide Electrodes in Aqueous Solutions , 1977 .

[195]  G. Somorjai,et al.  Photocatalytic production of hydrogen from water by a p- and n-type polycrystalline iron oxide assembly , 1982 .

[196]  Y. Pleskov,et al.  Photosplitting of water in a photoelectrolyser with solid polymer electrolyte , 1993 .

[197]  Y. Matsumoto,et al.  Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts , 2004 .

[198]  A. Fujishima,et al.  Generation and Deactivation Processes of Superoxide Formed on TiO2 Film Illuminated by Very Weak UV Light in Air or Water , 2000 .

[199]  Hideki Kato,et al.  Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts , 1999 .

[200]  W. Choi,et al.  Visible light active platinum-ion-doped TiO2 photocatalyst. , 2005, The journal of physical chemistry. B.

[201]  K. Domen,et al.  Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution , 1987 .

[202]  A. Ghosh,et al.  Photocatalytic decomposition of water at semiconductor electrodes , 1978 .

[203]  J. Bolton,et al.  Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .

[204]  M. Matsumura,et al.  Unique Effects of Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide , 1997 .

[205]  Vladimir M. Aroutiounian,et al.  Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting , 2005 .

[206]  A. Kudo,et al.  PHOTOCATALYTIC DECOMPOSITION OF WATER INTO H2 AND O2 OVER NOVEL PHOTOCATALYST K3TA3SI2O13 WITH PILLARED STRUCTURE CONSISTING OF THREE TAO6 CHAINS , 1997 .

[207]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[208]  J. Bolton,et al.  Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions , 1996 .

[209]  S. Pizzini,et al.  Electrochemical investigation of an illuminated TiO2-electrode , 1976 .

[210]  M. Ashokkumar,et al.  Hydrogen evolution from water with visible radiation in presence of Cu(II)/WO3 and electron relay , 1989 .

[211]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[212]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[213]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .

[214]  B. Khazai,et al.  Preparation and photoelectronic properties of FeNbO4 , 1980 .

[215]  D. Cahen,et al.  Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC) , 1976, Nature.

[216]  J. G. Mavroides,et al.  Photoelectrolysis of water in cells with SrTiO3 anodes , 1976 .

[217]  Kazunori Sato,et al.  Effects of RuO2 on activity for water decomposition of a RuO2/Na2Ti3O7 photocatalyst with a zigzag layer structure , 1998 .

[218]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[219]  Y. Nakato,et al.  Selective Formation of Nanoholes with (100)-Face Walls by Photoetching of n-TiO2 (Rutile) Electrodes, Accompanied by Increases in Water-Oxidation Photocurrent , 2000 .

[220]  Akira Fujishima Comment on "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2" (I) , 2003, Science.

[221]  Michael R. Hoffmann,et al.  Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces , 2000 .

[222]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[223]  P. Salvador Analysis of the physical properties of TiO2Be electrodes in the photoassisted oxidation of water , 1982 .

[224]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[225]  M. Kaneko,et al.  Electron Source in Photoinduced Hydrogen Production on Pt-supported TiO2 Particles , 1999 .

[226]  A. J. Frank,et al.  Improved charge separation and photosensitized hydrogen evolution from water with titanium dioxide particles on colloidal silica carriers , 1987 .

[227]  H. Yoneyama,et al.  Photoelectrochemical Properties of CdSnO3 and LaRhO3 Electrodes in Aqueous Solutions , 1981 .

[228]  S. Oh,et al.  Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M = Cr, Fe) under Visible Light Irradiation (λ > 420 nm)† , 2005 .

[229]  F. A. Benko,et al.  Cd2SnO4, CdIn2O4, and Cd2GeO4 as anodes for the photoelectrolysis of water , 1980 .

[230]  K. Lackner Comment on "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2" (III) , 2003, Science.

[231]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[232]  H. Tosine,et al.  Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions , 1976, Bulletin of environmental contamination and toxicology.

[233]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[234]  G. Marcì,et al.  Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol , 2002 .

[235]  Junichi Nishino,et al.  Primary Passages for Various TiO2 Photocatalysts Studied by Means of Luminol Chemiluminescent Probe , 1999 .

[236]  T. Ma,et al.  Photocatalytic hydrogen production from water over a LaMnO3/CdS nanocomposite prepared by the reverse micelle method , 2003 .

[237]  Kazunori Sato,et al.  Stable photocatalytic activity of BaTi4O9 combined with ruthenium oxide for decomposition of water , 1992 .

[238]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[239]  M. Hiramoto,et al.  Photoelectrolysis of Water under Visible Light with Doped SrTiO3 Electrodes , 1983 .

[240]  K. Domen,et al.  Photocatalytic decomposition of water over NiOK4Nb6O17 catalyst , 1988 .

[241]  D. Ginley,et al.  Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[242]  J. Augustynski The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .

[243]  Onkar Nath Srivastava,et al.  Semiconductor-septum photoelectrochemical solar cell for hydrogen production , 2000 .

[244]  M. P. Dare-Edwards,et al.  Photoelectrochemistry of nickel(II) oxide , 1981 .

[245]  K. Domen,et al.  H2 Evolution from Various Aqueous Solutions over Thermally Reduced TiO2 and Pt–TiO2 Powder , 1988 .

[246]  T. Ishibashi,et al.  Photodynamics of NaTaO3 Catalysts for Efficient Water Splitting , 2003 .

[247]  M. Graetzel,et al.  Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light , 1984 .

[248]  A. Kudo,et al.  Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation , 2004 .

[249]  Shinri Sato,et al.  Photolysis of water over metallized powdered titanium dioxide , 1985 .

[250]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[251]  Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions , 1980 .

[252]  David L. Morse,et al.  Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode , 1976 .

[253]  D. N. Furlong,et al.  Colloidal semiconductors in systems for the sacrificial photolysis of water. 1. Preparation of a platinum/titanium dioxide catalyst by heterocoagulation and its physical characterization , 1985 .

[254]  M. Archer Electrochemical aspects of solar energy conversion , 1975 .

[255]  J. F. Dewald The charge and potential distributions at the zinc oxide electrode , 1960 .

[256]  Jianjun He,et al.  Photoelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport , 2000 .

[257]  Shyam S. Kocha,et al.  Photoelectrochemical decomposition of water using modified monolithic tandem cells fn2 fn2 Presented , 1999 .

[258]  M. Natan,et al.  Chemically Modified Microelectrode Arrays , 2007 .

[259]  Krishnan Rajeshwar,et al.  Spatially directed electrosynthesis of semiconductors for photoelectrochemical applications , 2004 .

[260]  Adam Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[261]  G. Blasse,et al.  Visible-light induced photocurrents in SrTiO3-LaCrO3 single-crystalline electrodes , 1981 .

[262]  Hyuk-Nyun Kim,et al.  Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate , 2000 .

[263]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[264]  R. Compton Electrode kinetics : reactions , 1987 .

[265]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[266]  Adam Heller,et al.  Hydrogen-Evolving Solar Cells , 1984, Science.

[267]  H. Tsubomura,et al.  Electro-and photo-luminescence spectra in various n-type semiconductors in relation with anodic reaction intermediates , 1982 .

[268]  MisekiYugo,et al.  Water Splitting into H2 and O2 over Cs2Nb4O11 Photocatalyst , 2005 .

[269]  A. Bard,et al.  HETEROGENEOUS PHOTOCATALYTIC PREPARATION OF SUPPORTED CATALYSTS. PHOTODEPOSITION OF PLATINUM ON TITANIUM DIOXIDE POWDER AND OTHER SUBSTRATES , 1978 .

[270]  Melvin Calvin,et al.  SOLAR INDUCED WATER SPLITTING WITH p/n HETEROTYPE PHOTOCHEMICAL DIODES: n-Fe203/p-GaP , 1981 .

[271]  H. Arakawa,et al.  Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum–titanium(IV) oxide suspension , 1992 .

[272]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[273]  P. Salvador Influence of pH on the Potential Dependence of the Efficiency of Water Photo‐oxidation at n ‐ TiO2 Electrodes , 1981 .

[274]  P. Salvador,et al.  Mediation by surface states of the electroreduction of photogenerated H2O2 and O2 onn-SrTiO3 in a photoelectrochemical cell , 1983 .

[275]  M. Graetzel,et al.  Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide , 1984 .

[276]  R. D. Nasby,et al.  Tungsten trioxide as an electrode for photoelectrolysis of water , 1976 .

[277]  A. Bard,et al.  Semiconductor Electrodes: V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis , 1976 .

[278]  Arthur B. Ellis,et al.  Semiconducting potassium tantalate electrodes. Photoassistance agents for the efficient electrolysis of water , 1976 .

[279]  B. Parkinson,et al.  The energetics of p/n photoelectrolysis cells , 1984 .

[280]  D. I. Tchernev,et al.  Photoelectrolysis of water in cells with TiO2 anodes , 1975 .

[281]  J. White,et al.  Photoassisted Water-Gas Shift Reaction over Platinized TiO2 Catalysts. , 1980 .

[282]  K. Rajeshwar,et al.  Photoelectrochemical behavior of composite metal oxide semiconductor films with a WO3 matrix and occluded Degussa P 25 TiO2 particles , 2005 .

[283]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[284]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[285]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[286]  Anthony R. West,et al.  Basic Solid State Chemistry , 1988 .

[287]  J. Bockris,et al.  Stable photoelectrochemical cells for the splitting of water , 1977, Nature.

[288]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. II. Thermoelectric power. , 2006, The journal of physical chemistry. B.

[289]  Akira Watanabe,et al.  Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles , 2003 .

[290]  A. Mills,et al.  Photosensitised dissociation of water using dispersed suspensions of n-type semiconductors , 1982 .

[291]  Hideki Kato,et al.  Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium , 2002 .

[292]  G. Blasse,et al.  The colouration of titanates by transition-metal ions in view of solar energy applications , 1981 .

[293]  J. Bockris,et al.  Hydrogen and electricity from water and light: A lanthanum chromite-titanium dioxide anode , 1979 .

[294]  A. Kudo,et al.  Overall Water Splitting into H2 and O2 under UV Irradiation on NiO-loaded ZnNb2O6 Photocatalysts Consisting of d10 and d0 Ions , 1999 .

[295]  A. Weidenkaff,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes , 2003 .

[296]  J. Turner,et al.  Mechanistic studies of the photocatalytic behavior of titania: particles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions , 1991 .

[297]  Krishnan Rajeshwar,et al.  Electrochemical Aspects of Photocatalysis: Application to Detoxification and Disinfection Scenarios , 1995 .

[298]  V. Fernández,et al.  Oxygen evolution improvement at a Cr-doped SrTiO3 photoanode by a Ru-oxide coating , 1982 .

[299]  J. Augustynski,et al.  Behavior of surface peroxo species in the photoreactions at titanium dioxide , 1986 .

[300]  D. Lincot,et al.  Pulsed electrodeposition of WO3-TiO2 composite films , 2003 .

[301]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[302]  A. Kudo,et al.  H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation , 2004 .

[303]  H. Arakawa,et al.  Significant influence of solvent on hydrogen production from aqueous I3−/I− redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation , 2003 .

[304]  A. Gonzalez-Elipe,et al.  Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound , 1989 .

[305]  A. Kudo,et al.  Photocatalytic Decomposition of Pure Water into H2 and O2 over SrTa2O6 Prepared by a Flux Method , 1999 .

[306]  A. Kudo,et al.  New tantalate photocatalysts for water decomposition into H2 and O2 , 1998 .

[307]  J. Bolton,et al.  Photocatalytic Efficiency Variability in TiO2 Particles , 1995 .

[308]  D. Meissner,et al.  Light-induced generation of hydrogen at CdS-monograin membranes , 1983 .

[309]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[310]  F. Liou,et al.  Photoelectrolysis at Fe/sub 2/O/sub 3//TiO/sub 2/ heterojunction electrode , 1982 .

[311]  F. A. Benko,et al.  A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , 1982 .

[312]  David S. Ginley,et al.  Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .

[313]  H. Arakawa,et al.  Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. , 2001, Chemical communications.

[314]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[315]  Donald Fitzmaurice,et al.  ELECTRON ACCUMULATION IN NANOSTRUCTURED TIO2 (ANATASE) ELECTRODES , 1999 .

[316]  H. Yoneyama,et al.  Effects of illumination intensity and solution pH on the competitive oxidation of halide ions and water at an illuminated TiO2 electrode , 1981 .

[317]  K. Domen,et al.  Overall photodecomposition of water on a layered niobiate catalyst , 1990 .

[318]  Thomas E. Mallouk,et al.  Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids , 2000 .

[319]  D. Meissner,et al.  Visible-light detoxification and charge generation by transition metal chloride modified titania. , 2000, Chemistry.

[320]  T. Mallouk,et al.  Prying Apart Ruddlesden−Popper Phases: Exfoliation into Sheets and Nanotubes for Assembly of Perovskite Thin Films , 2000 .

[321]  D. R. Turner The Anode Behavior of Germanium in Aqueous Solutions , 1956 .

[322]  C. Martelet,et al.  Photoelectrochemical behaviour of TiO2 and formation of hydrogen peroxide , 1979 .

[323]  N. Saito,et al.  Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated d10 Configuration. I. Influences of Preparation Conditions on Activity , 2003 .

[324]  Kazunori Sato,et al.  A thin-film semiconducting titanium dioxide combined with ferroelectrics for photoassisted water decomposition , 1985 .

[325]  K. Domen,et al.  Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst , 1980 .

[326]  Yu‐Wen Chen,et al.  Water splitting reaction on NiO/InVO4 under visible light irradiation , 2007 .

[327]  Akira Fujishima,et al.  Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis , 1971 .

[328]  O. Srivastava,et al.  Titania-titanium semiconductor septum based electrochemical photovoltaic cell , 1992 .

[329]  J. Augustynski,et al.  Novel Semiconducting Electrodes for the Photosensitized Electrolysis of Water , 1977 .

[330]  M. Grätzel,et al.  Cyclic Water Cleavage by Visible Light: Drastic Improvement of Yield of H2 and O2 with Bifunctional Redox Catalysts† , 1980 .

[331]  A. Bard,et al.  Semiconductor Electrodes I . The Chemical Vapor Deposition and Application of Polycrystalline N‐Type Titanium Dioxide Electrodes to the Photosensitized Electrolysis of Water , 1975 .

[332]  H. Yoneyama,et al.  Photoelectrochemical properties of Sr?Fe?Nb oxides having perovskite structure , 1982 .

[333]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. , 2006, The journal of physical chemistry. B.

[334]  R. Davidson,et al.  Optimization of the photocatalytic properties of titanium dioxide , 1985 .

[335]  J. K. Thomas,et al.  Cadmium sulfide of small dimensions produced in inverted micelles , 1986 .

[336]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[337]  Akira Fujishima,et al.  Photoelectrochemical Reactions at SrTiO3 Single Crystal Electrode , 1976 .

[338]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[339]  W. Brattain,et al.  Effect of Cupric Ion on the Electrical Properties of the Germanium‐Aqueous Electrolyte Interface , 1962 .

[340]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[341]  J. Kennedy,et al.  Photo‐oxidation of Water at Barium Titanate Electrodes , 1976 .

[342]  Akira Fujishima,et al.  Formation of Hydrogen Gas with an Electrochemical Photo-cell , 1975 .

[343]  Panagiotis Lianos,et al.  Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films , 2000 .

[344]  J. Casado,et al.  Electrocatalytic production of hydrogen boosted by organic pollutants and visible light , 2006 .

[345]  R. Rauh,et al.  Design and evaluation of new oxide photoanodes for the photoelectrolysis of water with solar energy , 1979 .

[346]  K. Tabata,et al.  Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system , 1995 .

[347]  Kazuhiko Yazawa,et al.  Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .

[348]  O. Srivastava,et al.  Semiconductor-septum photoelectrochemical cell for solar hydrogen production , 2000 .

[349]  M. Wrighton,et al.  Surface Functionalization of Electrodes with Molecular Reagents , 1986, Science.

[350]  J. Augustynski,et al.  Photoelectrolysis of Water; Photoresponses of Nickel, Chromium and Zinc‐Doped Polycrystalline TiO2 Electrodes , 1980 .

[351]  M. Dignam,et al.  Efficiency of Splitting Water with Semiconducting Photoelectrodes , 1984 .

[352]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[353]  T. Mallouk,et al.  Light-to-chemical energy conversion in lamellar solids and thin films. , 2005, Inorganic chemistry.

[354]  T. Mallouk,et al.  Exfoliation of layered rutile and perovskite tungstates. , 2002, Chemical communications.

[355]  R. D. Wright,et al.  Inorganic materials for photoelectrolysis , 1980 .

[356]  G. Blasse,et al.  Materials with cationic valence and conduction bands for photoelectrolysis of water , 1981 .

[357]  M. Fernández-García,et al.  Influence of N-doping on the structure and electronic properties of titania nanoparticle photocatalysts. , 2006, The journal of physical chemistry. B.

[358]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[359]  D. E. Scaife Oxide semiconductors in photoelectrochemical conversion of solar energy , 1980 .