A Numerical Method for the Elliptic Monge-Ampère Equation with Transport Boundary Conditions

The problem of optimal mass transport arises in numerous applications including image registration, mesh generation, reflector design, and astrophysics. One approach to solving this problem is via the Monge-Amp\`ere equation. While recent years have seen much work in the development of numerical methods for solving this equation, very little has been done on the implementation of the transport boundary condition. In this paper, we propose a method for solving the transport problem by iteratively solving a Monge-Amp\`ere equation with Neumann boundary conditions. To enable mappings between variable densities, we extend an earlier discretization of the equation to allow for right-hand sides that depend on gradients of the solution [Froese and Oberman, SIAM J. Numer. Anal., 49 (2011) 1692--1714]. This discretization provably converges to the viscosity solution. The resulting system is solved efficiently with Newton's method. We provide several challenging computational examples that demonstrate the effectiveness and efficiency ($O(M)-O(M^{1.3})$ time) of the proposed method.

[1]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[2]  J. F. Williams,et al.  MOVING MESH GENERATION USING THE PARABOLIC MONGE–AMPÈRE EQUATION∗ , 2008 .

[3]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[4]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[5]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[6]  Adam M. Oberman,et al.  Exact semi-geostrophic flows in an elliptical ocean basin , 2004 .

[7]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[8]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[9]  Xiaobing Feng,et al.  Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..

[10]  J. Urbas On the second boundary value problem for equations of Monge-Ampère type. , 1997 .

[11]  Adam M. Oberman,et al.  Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..

[12]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[13]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[14]  V. Oliker,et al.  Optical Design of Single Reflector Systems and the Monge–Kantorovich Mass Transfer Problem , 2003 .

[15]  J. Barrett,et al.  Partial L1 Monge–Kantorovich problem: variational formulation and numerical approximation , 2009 .

[16]  Pierre-Louis Lions,et al.  THE Neumann problem for equations of Monge-Ampère type , 1986 .

[17]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[18]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[19]  N. Trudinger,et al.  On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.

[20]  L. Kantorovich On a Problem of Monge , 2006 .

[21]  Gallagher Pryor,et al.  3D nonrigid registration via optimal mass transport on the GPU , 2009, Medical Image Anal..

[22]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[23]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[24]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[25]  Vladimir Oliker,et al.  Optical Design of Two-reflector Systems, the Monge-Kantorovich Mass Transfer Problem and Fermat's Principle , 2003 .

[26]  U. Frisch,et al.  A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.

[27]  J. F. Williams,et al.  Moving Mesh Generation Using the Parabolic Monge--Amp[e-grave]re Equation , 2009, SIAM J. Sci. Comput..

[28]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[29]  Roland Glowinski,et al.  On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach , 2008 .

[30]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[31]  Gian Luca Delzanno,et al.  Grid Generation and Adaptation by Monge-Kantorovich Optimization in Two and Three Dimensions , 2008, IMR.

[32]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations , 2009 .

[33]  P. Lyons Neumann Type Boundary Conditions for Hamilton-Jacobi Equations. , 1985 .

[34]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[35]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[36]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[37]  Ron Kikinis,et al.  Mass Preserving Mappings and Image Registration , 2001, MICCAI.

[38]  Yu. N. Kiseliov Algorithms of projection of a point onto an ellipsoid , 1994 .

[39]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[40]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[41]  C. Villani Topics in Optimal Transportation , 2003 .

[42]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[43]  A. Banerjee Convex Analysis and Optimization , 2006 .

[44]  J. Barrett,et al.  A MIXED FORMULATION OF THE MONGE-KANTOROVICH EQUATIONS , 2007 .

[45]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .