Common features of microRNA target prediction tools

The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output.

[1]  Peter E. Morris,et al.  Practical Aspects , 2005, Self-Learning Control of Finite Markov Chains.

[2]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[3]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[4]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[5]  Michael S. Waterman,et al.  RNA Secondary Structure , 1995 .

[6]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[7]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[8]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[9]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[10]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[11]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[12]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[13]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[14]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[15]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[16]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[17]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[18]  Vesselin Baev,et al.  MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence , 2005, Nucleic Acids Res..

[19]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[20]  Ye Ding,et al.  Structure clustering features on the Sfold Web server , 2005, Bioinform..

[21]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[22]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[23]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[24]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[25]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[26]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[27]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[28]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[29]  L. Lim,et al.  Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[30]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[31]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[32]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[33]  Lukasz A. Kurgan,et al.  HuMiTar: A sequence-based method for prediction of human microRNA targets , 2008, Algorithms for Molecular Biology.

[34]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[35]  Sanghamitra Bandyopadhyay,et al.  TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples , 2009, Bioinform..

[36]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[37]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[38]  Peter A. Jones,et al.  MicroRNAs: critical mediators of differentiation, development and disease. , 2009, Swiss medical weekly.

[39]  D. Wiley,et al.  A decade of development… , 2009 .

[40]  Dennis Shasha,et al.  miRò: a miRNA knowledge base , 2009, Database J. Biol. Databases Curation.

[41]  Yufei Huang,et al.  Survey of Computational Algorithms for MicroRNA Target Prediction , 2009, Current genomics.

[42]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[43]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..

[44]  Pascal Barbry,et al.  Bioinformatics Applications Note Gene Expression Mirontop: Mining Micrornas Targets across Large Scale Gene Expression Studies , 2022 .

[45]  M. Fedor,et al.  mRNA Secondary Structures Fold Sequentially But Exchange Rapidly In Vivo , 2010, PLoS biology.

[46]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[47]  Dong Yue,et al.  Improving performance of mammalian microRNA target prediction , 2010, BMC Bioinformatics.

[48]  V. Ambros MicroRNAs and developmental timing. , 2011, Current opinion in genetics & development.

[49]  W. Krzyzosiak,et al.  Practical Aspects of microRNA Target Prediction , 2011, Current molecular medicine.

[50]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[51]  Julia Starega-Roslan,et al.  The role of the precursor structure in the biogenesis of microRNA , 2011, Cellular and Molecular Life Sciences.

[52]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[53]  P. Sathyanarayana,et al.  miR‐199b‐5p directly targets PODXL and DDR1 and decreased levels of miR‐199b‐5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia , 2012, American journal of hematology.

[54]  Ivo Grosse,et al.  Functional microRNA targets in protein coding sequences , 2012, Bioinform..

[55]  Isidore Rigoutsos,et al.  Interactive exploration of RNA22 microRNA target predictions , 2012, Bioinform..

[56]  Elisa Ficarra,et al.  One Decade of Development and Evolution of MicroRNA Target Prediction Algorithms , 2012, Genom. Proteom. Bioinform..

[57]  Ioannis S Vlachos,et al.  Online resources for miRNA analysis. , 2013, Clinical biochemistry.

[58]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[59]  Tetsushi Yada,et al.  miRNA-target prediction based on transcriptional regulation , 2013, BMC Genomics.

[60]  Fast and effective? , 2013, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[61]  Harsh Dweep,et al.  Send Orders of Reprints at Reprints@benthamscience.net In-silico Algorithms for the Screening of Possible Microrna Binding Sites and Their Interactions , 2022 .

[62]  F. Baudi,et al.  The Role of MicroRNAs in Cancer Susceptibility , 2013, BioMed research international.

[63]  Panayiotis V. Benos,et al.  ComiR: combinatorial microRNA target prediction tool , 2013, Nucleic Acids Res..

[64]  Matthias Blum,et al.  miRmap web: comprehensive microRNA target prediction online , 2013, Nucleic Acids Res..

[65]  Anushya Muruganujan,et al.  PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees , 2012, Nucleic Acids Res..