Using Dynamic Programming for Solving Variational Problems in Vision

Dynamic programming is discussed as an approach to solving variational problems in vision. Dynamic programming ensures global optimality of the solution, is numerically stable, and allows for hard constraints to be enforced on the behavior of the solution within a natural and straightforward structure. As a specific example of the approach's efficacy, applying dynamic programming to the energy-minimizing active contours is described. The optimization problem is set up as a discrete multistage decision process and is solved by a time-delayed discrete dynamic programming algorithm. A parallel procedure for decreasing computational costs is discussed. >

[1]  F. B. Hildebrand,et al.  Methods of applied mathematics , 1953 .

[2]  S. Dreyfus Dynamic Programming and the Calculus of Variations , 1960 .

[3]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[4]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  S. Dreyfus The Main Results of Optimal Control Theory Made Simple , 1972 .

[7]  Berthold K. P. Horn Image Intensity Understanding , 1975 .

[8]  G. Wahba,et al.  Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing , 1975 .

[9]  Berthold K. P. Horn Understanding Image Intensities , 1977, Artif. Intell..

[10]  A. Unwin The Art and Theory of Dynamic Programming , 1979 .

[11]  G. Siouris,et al.  Optimum systems control , 1979, Proceedings of the IEEE.

[12]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[13]  W. Eric L. Grimson,et al.  From images to surfaces , 1981 .

[14]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  T. Poggio,et al.  Ill-Posed Problems and Regularization Analysis in Early Vision , 1984 .

[17]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Peter E. Caines,et al.  Edge detection with image enhancement via dynamic programming , 1986, Comput. Vis. Graph. Image Process..

[20]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[22]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[23]  T. Poggio,et al.  Visual Integration and Detection of Discontinuities: The Key Role of Intensity Edges , 1987 .

[24]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[25]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[26]  Terry E. Weymouth,et al.  Using Dynamic Programming For Minimizing The Energy Of Active Contours In The Presence Of Hard Constraints , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[27]  Hiromitsu Yamada,et al.  Recognition of Kidney Glomerulus by Dynamic Programming Matching Method , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Rama Chellappa,et al.  Pyramid Implementation Of Optimal Step Conjugate Search Algorithms For Some Computer Vision Problems , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[30]  Alan L. Yuille,et al.  Determining The Optimal Weights In Multiple Objective Function Optimization , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[31]  D.J. Anderson,et al.  Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[33]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .