The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.

[1]  D. Kern,et al.  The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Evidence for a two-step aminoacylation pathway, and study of the reactivity of the intermediate complex. , 2005, European journal of biochemistry.

[2]  H. Becker,et al.  When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Shigeyuki Yokoyama,et al.  ATP binding by glutamyl‐tRNA synthetase is switched to the productive mode by tRNA binding , 2003, The EMBO journal.

[4]  Renaud Vincentelli,et al.  Medium-scale structural genomics: strategies for protein expression and crystallization. , 2003, Accounts of chemical research.

[5]  Renaud Vincentelli,et al.  A medium-throughput crystallization approach. , 2002, Acta crystallographica. Section D, Biological crystallography.

[6]  C. Francklyn,et al.  Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. , 2002, RNA.

[7]  J. Claverie,et al.  In Ssarch of new anti-bacterial target genes: a comparative/structural genomics approach. , 2002, Combinatorial chemistry & high throughput screening.

[8]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[9]  J. Perona,et al.  Structural origins of amino acid selection without editing by cysteinyl‐tRNA synthetase , 2002, The EMBO journal.

[10]  Shigeyuki Yokoyama,et al.  Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase , 2001, Nature Structural Biology.

[11]  M. Bovee,et al.  Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase , 2000, Nature Structural Biology.

[12]  L. Ribas de Pouplana,et al.  Footprints of aminoacyl-tRNA synthetases are everywhere. , 2000, Trends in biochemical sciences.

[13]  O. Nureki,et al.  Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. , 1999, Journal of molecular biology.

[14]  S. Martinis,et al.  Aminoacyl-tRNA synthetases: a new image for a classical family. , 1999, Biochimie.

[15]  R Giegé,et al.  Universal rules and idiosyncratic features in tRNA identity. , 1998, Nucleic acids research.

[16]  H. Becker,et al.  Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[18]  M. Siatecka,et al.  Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. , 1998, European journal of biochemistry.

[19]  L. Lacoste,et al.  Glutamyl Adenylate Analogues Are Inhibitors of Glutamyl-tRNA Synthetase , 1998 .

[20]  T. Steitz,et al.  How glutaminyl-tRNA synthetase selects glutamine. , 1998, Structure.

[21]  T. Nakatsu,et al.  Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase , 1998, Nature Structural Biology.

[22]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[23]  D. Söll,et al.  Aminoacyl-tRNA synthesis: divergent routes to a common goal. , 1997, Trends in biochemical sciences.

[24]  L. Lacoste,et al.  Widespread Use of the Glu-tRNAGln Transamidation Pathway among Bacteria , 1996, The Journal of Biological Chemistry.

[25]  O. Nureki,et al.  Major identity determinants in the "augmented D helix" of tRNA(Glu) from Escherichia coli. , 1996, Journal of molecular biology.

[26]  J. Liu,et al.  The Zinc-binding Site of Escherichia coli Glutamyl-tRNA Synthetase Is Located in the Acceptor-binding Domain , 1995, The Journal of Biological Chemistry.

[27]  Erratum: Architectures of Class-Defining and Specific Domains of Glutamyl-tRNA Synthetase , 1995, Science.

[28]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[29]  M. Mirande,et al.  Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Söll,et al.  Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases. , 1993, The EMBO journal.

[31]  J. Liu,et al.  The glutamyl-tRNA synthetase of Escherichia coli contains one atom of zinc essential for its native conformation and its catalytic activity. , 1993, Biochemistry.

[32]  R Giegé,et al.  An operational RNA code for amino acids and possible relationship to genetic code. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  O. Nureki,et al.  Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. , 1993, The Journal of biological chemistry.

[34]  P. Schimmel,et al.  Dissection of a class II tRNA synthetase: determinants for minihelix recognition are tightly associated with domain for amino acid activation. , 1993, Biochemistry.

[35]  D. Söll,et al.  A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. , 1993, Biochemistry.

[36]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[37]  S. Cusack Aminoacyl-tRNA synthetases , 1993 .

[38]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[39]  Olivier Poch,et al.  Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs , 1990, Nature.

[40]  J. Miller,et al.  Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. , 1990, Journal of molecular biology.

[41]  J. Miller,et al.  Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. , 1990, Journal of molecular biology.

[42]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[43]  K. Biemann,et al.  Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. , 1986, The Journal of biological chemistry.

[44]  D. Kern,et al.  The catalytic mechanism of the glutamyl-tRNA synthetase from Escherichia coli. Detection of an intermediate complex in which glutamate is activated. , 1980, The Journal of biological chemistry.

[45]  D. Kern,et al.  The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. , 1980, Biochimie.

[46]  S. Potier,et al.  The monomeric glutamyl-tRNA synthetase of Escherichia coli. Purification and relation between its structural and catalytic properties. , 1979, The Journal of biological chemistry.

[47]  R Giegé,et al.  Factors determining the specificity of the tRNA aminoacylation reaction. Non-absolute specificity of tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the maximal velocity. , 1973, Biochimie.

[48]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[49]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[50]  P. Schimmel,et al.  Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. , 1987, Annual review of biochemistry.

[51]  Ddpartement de Biochimie,et al.  The twenty aminoacyl-tRNA synthetases from Escherichia colt. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. , 1979 .

[52]  R. Giegé,et al.  Purification, characterization and mechanism of action of several aminoacyl-tRNA synthetases from Bacillus stearothermophilus. , 1976, Experientia. Supplementum.