A hierarchical refinement algorithm for fully automatic gridding in spotted DNA microarray image processing

Gridding, the first step in spotted DNA microarray image processing, usually requires human intervention to achieve acceptable accuracy. We present a new algorithm for automatic gridding based on hierarchical refinement to improve the efficiency, robustness and reproducibility of microarray data analysis. This algorithm employs morphological reconstruction along with global and local rotation detection, non-parametric optimal thresholding and local fine-tuning without any human intervention. Using synthetic data and real microarray images of different sizes and with different degrees of rotation of subarrays, we demonstrate that this algorithm can detect and compensate for alignment and rotation problems to obtain reliable and robust results.

[1]  Yuan-Ting Zhang,et al.  Signal processing techniques in genomic engineering , 2002, Proc. IEEE.

[2]  Peter Bajcsy Gridline: automatic grid alignment DNA microarray scans , 2004, IEEE Transactions on Image Processing.

[3]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  Azriel Rosenfeld,et al.  Picture Processing and Psychopictorics , 1970 .

[5]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[6]  Irwin Sobel,et al.  An Isotropic 3×3 image gradient operator , 1990 .

[7]  Yu Luo,et al.  Gridding and compression of microarray images , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[8]  Michael Recce,et al.  Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer , 2004, BMC Bioinformatics.

[9]  Stefano Lonardi,et al.  Gridding and compression of microarray images , 2004 .

[10]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Morphology into Binary Morphology , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[12]  Dov Stekel,et al.  Microarray Bioinformatics: Appendix: MIAME Glossary , 2003 .

[13]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[14]  Frank Y. Shih,et al.  Recursive soft morphological filters , 1995, IEEE Trans. Image Process..

[15]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[16]  Herbert Freeman,et al.  Machine Vision for Three-Dimensional Scenes , 1990 .

[17]  Radhakrishnan Nagarajan,et al.  Intensity-based segmentation of microarray images , 2003, IEEE Transactions on Medical Imaging.

[18]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  Hong Yan,et al.  Microarray Image Processing Based on Clustering and Morphological Analysis , 2003, APBC.

[21]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  A dynamical model with adaptive pixel moving for microarray images segmentation , 2004, Real Time Imaging.

[22]  Yuan-Kai Wang,et al.  DNA microarray image analysis using active contour model , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[23]  G. Sagerer,et al.  Methods for automatic microarray image segmentation , 2003, IEEE Transactions on NanoBioscience.

[24]  K. Martin,et al.  Vector filtering for color imaging , 2005, IEEE Signal Processing Magazine.

[25]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[26]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[27]  R.S.H. Istepanian,et al.  Application of wavelet modulus maxima in microarray spots recognition , 2003, IEEE Transactions on NanoBioscience.