Numerical approximation of the spatially homogeneous Fokker-Planck-Landau equation
暂无分享,去创建一个
[1] S. Wollman,et al. A deterministic particle method for the Vlasov-Fokker-Planck equation in one dimension , 2008 .
[2] D. A. Knoll,et al. An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .
[3] Pierre Degond,et al. THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .
[4] Mei-Qin Zhan. Local existence of classical solutions to the Landau equations , 1994 .
[5] S. Wollman,et al. Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in two dimensions , 2005, J. Comput. Phys..
[6] Shi Jin,et al. Author's Personal Copy a Class of Asymptotic-preserving Schemes for the Fokker–planck–landau Equation , 2011 .
[7] Stéphane Cordier,et al. Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .
[8] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[9] L. Hsiao,et al. On the Cauchy problem of the Boltzmann and Landau equations with soft potentials , 2007 .
[10] Giuseppe Toscani,et al. On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .
[11] I. F. Potapenko,et al. The completely conservative difference schemes for the nonlinear Landau—Fokker—Planck equation , 1999 .
[12] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[13] Vladimir Tikhonchuk,et al. High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..
[14] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[15] Mei-Qin Zhan. Local existence of solutions to the Landau–Maxwell system , 1994 .
[16] Tong Yang,et al. Global solutions to the relativistic Landau-Maxwell system in the whole space , 2012 .
[17] Francis Filbet,et al. Numerical approximation of collisional plasmas by high order methods , 2004 .
[18] F. Zaitsev,et al. Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations , 1998 .
[19] Yan Guo,et al. Exponential Decay for Soft Potentials near Maxwellian , 2008 .
[20] George H. Miley,et al. An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .
[21] Christian Lécot,et al. Numerical simulation of the plasma of an electron cyclotron resonance ion source , 2003 .
[22] Luc Mieussens,et al. Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..
[23] Pierre Degond,et al. Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .
[24] Robert M. Strain,et al. The Vlasov–Poisson–Landau System in $${\mathbb{R}^{3}_{x}}$$Rx3 , 2012, 1202.2471.
[25] Pierre Degond,et al. An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .
[26] James C. Whitney. Finite difference methods for the Fokker-Planck equation , 1970 .
[27] Yanjin Wang,et al. Global Solution and Time Decay of the Vlasov-Poisson-Landau System in R3 , 2012, SIAM J. Math. Anal..
[28] Chao-Jiang Xu,et al. ANALYTIC SMOOTHNESS EFFECT OF SOLUTIONS FOR SPATIALLY HOMOGENEOUS LANDAU EQUATION , 2009, 0910.1291.
[29] Lorenzo Pareschi,et al. A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .
[30] Yan Guo,et al. The Landau Equation in a Periodic Box , 2002 .
[31] Eric Darve,et al. The black-box fast multipole method , 2009, J. Comput. Phys..
[32] G. Biros,et al. PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials , 2015 .
[33] Yan Guo. The Vlasov-Poisson-Landau system in a periodic box , 2012 .
[34] Cédric Villani,et al. On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .
[35] A. R. Bell,et al. An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .
[36] Y. Berezin,et al. Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .
[37] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[38] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[39] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[40] F. Filbet,et al. Comparison of numerical schemes for Fokker-Planck-Landau equation , 2001 .
[41] Mohammed Lemou,et al. Multipole expansions for the Fokker-Planck-Landau operator , 1998 .
[42] J. S. Chang,et al. A practical difference scheme for Fokker-Planck equations☆ , 1970 .
[43] Huijiang Zhao,et al. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space , 2014 .
[44] G. Toscani,et al. Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .
[45] Stéphane Cordier,et al. Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .
[46] Cédric Villani,et al. On the Cauchy problem for Landau equation: sequential stability, global existence , 1996, Advances in Differential Equations.