Numerical approximation of the spatially homogeneous Fokker-Planck-Landau equation

A numerical method is developed for the spatially homogeneous FokkerPlanckLandau (FPL) equation for the case of Coulomb collisions. The equation is put into a form so that finite difference methods for parabolic type PDEs can be applied. Through a transformation of variables the velocity space computation is reduced to a bounded domain, and finite differencing is done with a well defined, exact, boundary condition corresponding to |v| at infinity. For the discretization in time implicit differencing is used. An analysis is carried out on the discrete approximation as applied to a linear FPL equation, and for the linear equation it is proved that the numerical method is unconditionally stable and convergent. Computational work is then done that demonstrates the unconditional stability and accuracy of the numerical method for the nonlinear FPL equation.

[1]  S. Wollman,et al.  A deterministic particle method for the Vlasov-Fokker-Planck equation in one dimension , 2008 .

[2]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[3]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .

[4]  Mei-Qin Zhan Local existence of classical solutions to the Landau equations , 1994 .

[5]  S. Wollman,et al.  Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in two dimensions , 2005, J. Comput. Phys..

[6]  Shi Jin,et al.  Author's Personal Copy a Class of Asymptotic-preserving Schemes for the Fokker–planck–landau Equation , 2011 .

[7]  Stéphane Cordier,et al.  Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .

[8]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[9]  L. Hsiao,et al.  On the Cauchy problem of the Boltzmann and Landau equations with soft potentials , 2007 .

[10]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .

[11]  I. F. Potapenko,et al.  The completely conservative difference schemes for the nonlinear Landau—Fokker—Planck equation , 1999 .

[12]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[13]  Vladimir Tikhonchuk,et al.  High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..

[14]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[15]  Mei-Qin Zhan Local existence of solutions to the Landau–Maxwell system , 1994 .

[16]  Tong Yang,et al.  Global solutions to the relativistic Landau-Maxwell system in the whole space , 2012 .

[17]  Francis Filbet,et al.  Numerical approximation of collisional plasmas by high order methods , 2004 .

[18]  F. Zaitsev,et al.  Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations , 1998 .

[19]  Yan Guo,et al.  Exponential Decay for Soft Potentials near Maxwellian , 2008 .

[20]  George H. Miley,et al.  An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .

[21]  Christian Lécot,et al.  Numerical simulation of the plasma of an electron cyclotron resonance ion source , 2003 .

[22]  Luc Mieussens,et al.  Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..

[23]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[24]  Robert M. Strain,et al.  The Vlasov–Poisson–Landau System in $${\mathbb{R}^{3}_{x}}$$Rx3 , 2012, 1202.2471.

[25]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[26]  James C. Whitney Finite difference methods for the Fokker-Planck equation , 1970 .

[27]  Yanjin Wang,et al.  Global Solution and Time Decay of the Vlasov-Poisson-Landau System in R3 , 2012, SIAM J. Math. Anal..

[28]  Chao-Jiang Xu,et al.  ANALYTIC SMOOTHNESS EFFECT OF SOLUTIONS FOR SPATIALLY HOMOGENEOUS LANDAU EQUATION , 2009, 0910.1291.

[29]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[30]  Yan Guo,et al.  The Landau Equation in a Periodic Box , 2002 .

[31]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[32]  G. Biros,et al.  PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials , 2015 .

[33]  Yan Guo The Vlasov-Poisson-Landau system in a periodic box , 2012 .

[34]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .

[35]  A. R. Bell,et al.  An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .

[36]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[37]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[38]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[39]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[40]  F. Filbet,et al.  Comparison of numerical schemes for Fokker-Planck-Landau equation , 2001 .

[41]  Mohammed Lemou,et al.  Multipole expansions for the Fokker-Planck-Landau operator , 1998 .

[42]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[43]  Huijiang Zhao,et al.  One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space , 2014 .

[44]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[45]  Stéphane Cordier,et al.  Numerical Analysis of the Isotropic Fokker–Planck–Landau Equation , 2002 .

[46]  Cédric Villani,et al.  On the Cauchy problem for Landau equation: sequential stability, global existence , 1996, Advances in Differential Equations.