Analytical and Experimental Investigation of Temporal Interference for Selective Neuromuscular Activation

This paper presents an analytical method that offers both spectral and spatial information to predict local electric fields capable of driving neural activities for neuromuscular activation, and the findings of an experimental investigation on a common strategy utilizing multiple high-frequency (HF) electric fields to create an interference to recruit neural firing at depth. By introducing a cut-off frequency fcut too high to recruit neural firing in a frequency-based field descriptor, the analytical method offers an effective means to position a focused temporal interference (TI) without mechanically moving the electrodes. The experiment, which was conducted on both forearms of five healthy volunteers, validates the feasibility of the method for selective neuromuscular stimulation, where three nerve/muscles that control human fingers were independently stimulated with two current channels. The numerical and experimental findings demonstrate that the frequency-based method overcomes several limitations associated with surface-based electrical stimulation.