Synthesis and magnetothermal properties of a ferromagnetically coupled Ni(II)-Gd(III)-Ni(II) cluster.

A linear trimeric cluster of molecular formula [Ni2Gd(L(-))6](NO3) (1) (L(-) = (C14H12NO2) has been isolated with its structure determined via single crystal X-ray diffraction. Magnetic susceptibility measurements of 1 show that the nickel and gadolinium ions are coupled ferromagnetically, with a ground total spin state (S) of 11/2. Best fit spin Hamiltonian parameters obtained for 1 are J(1(Ni-Gd)) = +0.54 cm(-1), g = 2.01. EPR measurements confirm a low magnetic anisotropy (D = -0.135 cm(-1)) for 1. Heat capacity determination of the magnetocaloric effect (MCE) parameters for 1 shows that the change in magnetic entropy (-ΔS(m)) achieves a maximum of 13.74 J kg(-1) K(-1) at 4.0 K, with the ferromagnetic coupling giving a rapid change in low applied fields, confirming the potential of Gd molecular derivatives as coolants at liquid helium temperature.

[1]  Marco Evangelisti,et al.  A Dense Metal–Organic Framework for Enhanced Magnetic Refrigeration , 2013, Advanced materials.

[2]  Liviu F Chibotaru,et al.  Magnetic relaxation pathways in lanthanide single-molecule magnets. , 2013, Nature chemistry.

[3]  Bin Zhao,et al.  Unique (3,12)-connected coordination polymers displaying high stability, large magnetocaloric effect and slow magnetic relaxation. , 2013, Chemical communications.

[4]  Silvia Gómez-Coca,et al.  Two 3d-4f nanomagnets formed via a two-step in situ reaction of picolinaldehyde. , 2013, Chemical communications.

[5]  Sanjit Konar,et al.  Lanthanide based coordination polymers chill, relax under magnetic field and also fluoresce. , 2013, Dalton transactions.

[6]  E. McInnes,et al.  Magnetic Cooling at a Single Molecule Level: a Spectroscopic Investigation of Isolated Molecules on a Surface , 2013, Advanced materials.

[7]  Keith S. Murray,et al.  PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes , 2013, J. Comput. Chem..

[8]  N. Re,et al.  Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = , 2013, Inorganic chemistry.

[9]  J. Ruiz,et al.  A ferromagnetically coupled diphenoxo-bridged Gd(3+)-Mn2+ dinuclear complex with a large magneto-caloric effect. , 2013, Chemical communications.

[10]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[11]  Jianjun Zhang,et al.  A dual shell-like heptadecanuclearity [Gd5Ni12] cluster with ferromagnetic interaction and large magnetocaloric effect , 2013 .

[12]  Fu-Sheng Guo,et al.  Symmetry-related [Ln(III)6Mn(III)12] clusters toward single-molecule magnets and cryogenic magnetic refrigerants. , 2013, Inorganic chemistry.

[13]  P. Vrabel,et al.  A large cryogenic magnetocaloric effect exhibited at low field by a 3D ferromagnetically coupled Mn(II)-Gd(III) framework material. , 2012, Chemical communications.

[14]  José J. Baldoví,et al.  Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. , 2012, Inorganic chemistry.

[15]  B. Malaman,et al.  A metal-organic framework as attractive cryogenic magnetorefrigerant. , 2012, Chemistry.

[16]  K. Pedersen,et al.  Fluoride-bridged {Ln2Cr2} polynuclear complexes from semi-labile mer-[CrF3(py)3] and [Ln(hfac)3(H2O)2]. , 2012, Dalton transactions.

[17]  Abhijeet K. Chaudhari,et al.  Nitrate-bridged "pseudo-double-propeller"-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties. , 2012, Inorganic chemistry.

[18]  J. Sesé,et al.  Fragmenting Gadolinium: Mononuclear Polyoxometalate‐Based Magnetic Coolers for Ultra‐Low Temperatures , 2012, Advanced materials.

[19]  O. Roubeau,et al.  Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks. , 2012, Chemical communications.

[20]  J. Sesé,et al.  Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. , 2012, Physical review letters.

[21]  Marco Evangelisti,et al.  The importance of being exchanged: [Gd(III)4M(II)8(OH)8(L)8(O2CR)8]4+ clusters for magnetic refrigeration. , 2012, Angewandte Chemie.

[22]  Angelos B. Canaj,et al.  Heptanuclear heterometallic [Cu6Ln] clusters: trapping lanthanides into copper cages with artificial amino acids. , 2012, Inorganic chemistry.

[23]  Alina S. Dinca,et al.  Dodecanuclear [Cu(II)6Gd(III)6] nanoclusters as magnetic refrigerants. , 2012, Inorganic chemistry.

[24]  L. Long,et al.  High-nuclearity 3d-4f clusters as enhanced magnetic coolers and molecular magnets. , 2012, Journal of the American Chemical Society.

[25]  F. Tuna,et al.  Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants. , 2012, Journal of the American Chemical Society.

[26]  R. Sessoli Chilling with magnetic molecules. , 2012, Angewandte Chemie.

[27]  L. Long,et al.  A 48-metal cluster exhibiting a large magnetocaloric effect. , 2011, Angewandte Chemie.

[28]  G. Rajaraman,et al.  Density functional studies on dinuclear {Ni(II)Gd(III)} and trinuclear {Ni(II)Gd(III)Ni(II)} complexes: magnetic exchange and magneto-structural maps. , 2011, Dalton transactions.

[29]  A. Okazawa,et al.  Ferromagnetic exchange couplings showing a chemical trend in Cu-Ln-Cu complexes (Ln = Gd, Tb, Dy, Ho, Er). , 2011, Inorganic chemistry.

[30]  J. Alonso,et al.  Cryogenic magnetocaloric effect in a ferromagnetic molecular dimer. , 2011, Angewandte Chemie.

[31]  F. Tuna,et al.  Lanthanide discs chill well and relax slowly. , 2011, Chemical communications.

[32]  E. Brechin,et al.  Molecular coolers: The case for [CuII5GdIII4] , 2011 .

[33]  Yan‐Zhen Zheng,et al.  Large magnetocaloric effect in a Wells-Dawson type {Ni6Gd6P6} cage. , 2011, Angewandte Chemie.

[34]  Edwige Otero,et al.  Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets , 2010, Nature.

[35]  A. Powell,et al.  Magnetothermal studies of a series of coordination clusters built from ferromagnetically coupled {Mn(II) (4)Mn(III) (6)} supertetrahedral units. , 2010, Chemistry.

[36]  W. Wernsdorfer,et al.  A family of 3d-4f octa-nuclear [Mn(III)(4)Ln(III)(4)] wheels (Ln = Sm, Gd, Tb, Dy, Ho, Er, and Y): synthesis, structure, and magnetism. , 2010, Inorganic chemistry.

[37]  W. Wernsdorfer,et al.  Nickel/lanthanide single-molecule magnets: {Ni(3)Ln} "stars" with a ligand derived from the metal-promoted reduction of di-2-pyridyl ketone under solvothermal conditions. , 2010, Inorganic chemistry.

[38]  J. Morales,et al.  [Mn(III)4Ln(III)4] calix[4]arene clusters as enhanced magnetic coolers and molecular magnets. , 2010, Journal of the American Chemical Society.

[39]  V. Psycharis,et al.  Isomorphous replacement of MII ions in MII–GdIII dimers (MII = CuII, MnII, NiII, CoII, ZnII): magnetic studies of the products , 2010 .

[40]  W. Wernsdorfer,et al.  3d-4f clusters with large spin ground states and SMM behaviour. , 2010, Dalton transactions.

[41]  A. Powell,et al.  Structures and magnetic properties of Mn(III)₄Ln(III)₄ aggregates with a "square-in-square" topology. , 2010, Dalton transactions.

[42]  E. Brechin,et al.  Recipes for enhanced molecular cooling. , 2010, Dalton transactions.

[43]  W. Wernsdorfer Molecular nanomagnets: towards molecular spintronics , 2010 .

[44]  S. Dalgarno,et al.  A calix[4]arene 3d/4f magnetic cooler. , 2009, Angewandte Chemie.

[45]  Song Gao,et al.  Magnetism and magnetocaloric effect in S = 7/2 Heisenberg antiferromagnet Gd2(fum)3(H2O)4·3H2O , 2009 .

[46]  C. Duhayon,et al.  Hetero-metallic {3d-4f-5d} complexes: preparation and magnetic behavior of trinuclear [(L(Me2)Ni-Ln){W(CN)(8)}] compounds (Ln = Gd, Tb, Dy, Ho, Er, Y; L(Me2) = Schiff base) and variable SMM characteristics for the Tb derivative. , 2009, Inorganic chemistry.

[47]  W. Wernsdorfer,et al.  A Mn17 octahedron with a giant ground-state spin: occurrence in discrete form and as multidimensional coordination polymers. , 2009, Inorganic chemistry.

[48]  L. Vendier,et al.  Experimental evidence for the participation of 5d Gd(III) orbitals in the magnetic interaction in Ni-Gd complexes. , 2009, Inorganic chemistry.

[49]  E. Pasca,et al.  Magnetocaloric effect in spin-degenerated molecular nanomagnets , 2009 .

[50]  A. Talarico,et al.  Magnetic memory of a single-molecule quantum magnet wired to a gold surface. , 2009, Nature materials.

[51]  A. Candini,et al.  Mixed-valent Mn supertetrahedra and planar discs as enhanced magnetic coolers. , 2008, Journal of the American Chemical Society.

[52]  N. Re,et al.  Synthesis, structures, and magnetic properties of face-sharing heterodinuclear Ni(II)-Ln(III) (Ln = Eu, Gd, Tb, Dy) complexes. , 2008, Inorganic chemistry.

[53]  J. Vittal,et al.  Trinuclear heterobimetallic Ni2Ln complexes [L2Ni2Ln][ClO4] (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er; LH3=(S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3): from simple paramagnetic complexes to single-molecule magnet behavior. , 2008, Inorganic chemistry.

[54]  Robert C. Thompson,et al.  Molecular architectures for trimetallic d/f/d complexes: structural and magnetic properties of a LnNi2 core. , 2008, Inorganic chemistry.

[55]  W. Wernsdorfer,et al.  A bell-shaped Mn11Gd2 single-molecule magnet. , 2007, Journal of the American Chemical Society.

[56]  E. McInnes,et al.  1,2,3-triazolate-bridged tetradecametallic transition metal clusters [M14(L)6O6(OMe)18X6] (M=FeIII, CrIII and VIII/IV) and related compounds: ground-state spins ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect. , 2007, Inorganic chemistry.

[57]  M. Affronte,et al.  A ferromagnetic mixed-valent Mn supertetrahedron: towards low-temperature magnetic refrigeration with molecular clusters. , 2007, Angewandte Chemie.

[58]  F. Tuna,et al.  Single molecule magnets for quantum computation , 2007 .

[59]  M. Okubo,et al.  Vacancy-driven magnetocaloric effect in Prussian blue analogues , 2006, cond-mat/0605228.

[60]  W. Wernsdorfer,et al.  A ferromagnetically coupled mn(19) aggregate with a record S=83/2 ground spin state. , 2006, Angewandte Chemie.

[61]  Stefano Sanvito,et al.  Molecular-Spintronics: The Art of Driving Spin Through Molecules , 2006, cond-mat/0605239.

[62]  M. Affronte,et al.  Magnetothermal properties of molecule-based materials , 2006, cond-mat/0603368.

[63]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[64]  E. McInnes,et al.  Molecular nanoclusters as magnetic refrigerants : The case of Fe14 with very large spin ground-state , 2005 .

[65]  E. McInnes,et al.  Spin-enhanced magnetocaloric effect in molecular nanomagnets , 2005, cond-mat/0507407.

[66]  J. Ribas,et al.  [GdNi6] and [LaNi6]: high-field EPR spectroscopy and magnetic studies of exchange-coupled octahedral clusters. , 2005, Angewandte Chemie.

[67]  N. Re,et al.  Ferromagnetic NiII-GdIII interactions in complexes with NiGd, NiGdNi, and NiGdGdNi cores supported by tripodal ligands. , 2004, Chemical communications.

[68]  S. Carretta,et al.  Engineering molecular rings for magnetocaloric effect , 2004 .

[69]  W. Wernsdorfer,et al.  Single-molecule magnets: a Mn25 complex with a record S = 51/2 spin for a molecular species. , 2004, Journal of the American Chemical Society.

[70]  Dante Gatteschi,et al.  Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. , 2002, Chemical reviews.

[71]  Li‐Min Zheng,et al.  A study on the novel d-f heterodinuclear Gd(III)-Ni(II) cryptate: synthesis, crystal structure, and magnetic behavior. , 2002, Inorganic chemistry.

[72]  X. Bohigas,et al.  Giant and time-dependent magnetocaloric effect in high-spin molecular magnets , 2000, cond-mat/0011384.

[73]  A. Caneschi,et al.  Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets , 1994, Science.

[74]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[75]  Dante Gatteschi,et al.  High-spin molecules: [Mn12O12(O2CR)16(H2O)4] , 1993 .

[76]  C. Jacobsen,et al.  ESR characterization of trans-diacidatotetrakis(pyridine)vanadium and -manganese trans-VII(py)4X2 and trans-MnII(py)4X2 (X = NCS, Cl, Br, I; py = pyridine) , 1993 .

[77]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[78]  A. Caneschi,et al.  Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions , 1985 .