Dynamic Analysis of a Lü Model in Six Dimensions and Its Projections
暂无分享,去创建一个
Guillermo Fernández-Anaya | Luis Alberto Quezada-Téllez | Salvador Carrillo-Moreno | Oscar Rosas-Jaimes | José Job Flores-Godoy
[1] Zhong Liu,et al. Hyperchaos from an Augmented Lü System , 2010, Int. J. Bifurc. Chaos.
[2] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[3] Tomasz Kapitaniak,et al. On strange nonchaotic attractors and their dimensions , 1991 .
[4] Paulo C. Rech,et al. Hyperchaotic states in the parameter-space , 2012, Appl. Math. Comput..
[5] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[6] Paulo C. Rech,et al. The organization of periodicity and hyperchaos in an asymmetric coupling of two chaotic Rössler oscillators , 2013 .
[7] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[8] Tudor Bînzar,et al. On a new chaotic system , 2015 .
[9] Chen Zengqiang,et al. Local bifurcation analysis of a four-dimensional hyperchaotic system ⁄ , 2008 .
[10] Jitao Sun,et al. Stability analysis of complex-valued nonlinear delay differential systems , 2013, Syst. Control. Lett..
[11] José-Job Flores-Godoy,et al. Some attractors in the Extended Complex Lorenz Model , 2013, Int. J. Bifurc. Chaos.
[12] Paulo C. Rech. Chaos and hyperchaos in a Hopfield neural network , 2011, Neurocomputing.
[13] Yang Tao,et al. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .
[14] Paulo C. Rech,et al. Suppression of periodic structures and the onset of hyperchaos in a parameter-space of the Baier–Sahle flow , 2016 .
[15] Paulo C. Rech,et al. A hyperchaotic Chua System , 2009, Int. J. Bifurc. Chaos.
[16] Claudia Valls,et al. Complex Analysis and Differential Equations , 2012 .
[17] Emad E. Mahmoud,et al. On the hyperchaotic complex Lü system , 2009 .
[18] Yuming Chen,et al. Dynamics of a hyperchaotic Lorenz-type system , 2014 .
[19] Z. E. Musielak,et al. High-Dimensional Chaos in dissipative and Driven Dynamical Systems , 2009, Int. J. Bifurc. Chaos.
[20] Amin Zarei,et al. Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors , 2015 .
[21] O. Rössler. An equation for hyperchaos , 1979 .
[22] Christophe Letellier,et al. A nine-dimensional Lorenz system to study high-dimensional chaos , 1998 .
[23] César Cruz-Hernández,et al. Synchronization of Time-Delay Chua's Oscillator with Application to Secure Communication , 2004 .
[24] Sergey P. Kuznetsov,et al. Strange Nonchaotic Attractors: Dynamics Between Order And Chaos in Quasiperiodically Forced Systems , 2006 .
[25] Emad E. Mahmoud,et al. ANALYSIS OF HYPERCHAOTIC COMPLEX LORENZ SYSTEMS , 2008 .
[26] Mark J. McGuinness,et al. The real and complex Lorenz equations in rotating fluids and lasers , 1982 .
[27] Jitao Sun,et al. Stability Analysis of Complex-Valued Nonlinear Differential System , 2013, J. Appl. Math..
[28] Gamal M. Mahmoud,et al. On Autonomous and nonautonomous Modified hyperchaotic Complex Lü Systems , 2011, Int. J. Bifurc. Chaos.
[29] Paulo C. Rech,et al. Delimiting hyperchaotic regions in parameter planes of a 5D continuous-time dynamical system , 2014, Appl. Math. Comput..
[30] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[31] Roberto Barrio,et al. When chaos meets hyperchaos: 4D Rössler model , 2015 .
[32] Paulo C. Rech,et al. Hyperchaos in a New Four-Dimensional Autonomous System , 2010, Int. J. Bifurc. Chaos.