Dynamic Systems Analysis Report for Nuclear Fuel Recycle

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

[1]  David J. Hill,et al.  Global Nuclear Energy Partnership Technology Development Plan , 2007 .

[2]  R Vance,et al.  Uranium 2005: Resources, Production and Demand , 2006 .

[3]  Paul L. Joskow,et al.  The economic future of nuclear power , 2009, Daedalus.

[4]  Kenneth S. Deffeyes,et al.  World Uranium Resources , 1980 .

[5]  P. Freund,et al.  Progress toward storage of carbon dioxide , 1997 .

[6]  Cd Keeling,et al.  Atmospheric carbon dioxide record from Mauna Loa , 2005 .

[7]  Robert Hill,et al.  Assessment of a Heterogeneous PWR Assembly for Plutonium and Minor Actinide Recycle , 2006 .

[8]  Tyler Dennett,et al.  In Due Course , 1945 .

[9]  James J. Dooley,et al.  The Role of Carbon Management Technologies in Addressing Atmospheric Stabilization of Greenhouse Gases , 2002 .

[10]  Theodore H. Bauer,et al.  Criteria Derived for Geologic Disposal Concepts , 2006 .

[11]  Kevan D. Weaver,et al.  Thorium-Based Transmuter Fuels for Light Water Reactors , 2004 .

[12]  J'Tia P. Taylor,et al.  A VISION of Advanced Nuclear System Cost Uncertainty , 2008 .

[13]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[14]  Robert Hill,et al.  Current Comparison of Advanced Fuel Cycle Options , 2006 .

[15]  R. Papp,et al.  Direct Disposal of Spent Nuclear Fuel , 1987 .

[16]  Robert Hill,et al.  The Physics of TRU Transmutation - A Systematic Approach to the Intercomparison of Systems , 2004 .

[17]  Robert Hill,et al.  Answering Key Fuel Cycle Questions , 2004 .

[18]  Jacob J. Jacobson,et al.  Modeling the Nuclear Fuel Cycle , 2005 .

[19]  Steven J. Piet,et al.  VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model , 2009 .

[20]  G. Marleau,et al.  A USER GUIDE FOR DRAGON Version DRAGON 000331 Release 3.04 , 2000 .

[21]  R. N. Hill,et al.  Summary of Generation-IV transmutation impacts. , 2005 .

[22]  W. Yang,et al.  Long-Lived Fission Product Transmutation Studies , 2004 .

[23]  J. Edmonds,et al.  The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation , 2006 .

[24]  R. A. Wigeland,et al.  Repository benefits of AFCI options. , 2005 .

[25]  Michael A. Pope,et al.  Evaluation of Homogeneous Options: Effects of Minor Actinide Exclusion from Single and Double Tier Recycle in Sodium Fast Reactors , 2008 .

[26]  E. A. Hoffman Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs. , 2005 .

[27]  B. J. Toppel User's guide for the REBUS-3 fuel cycle analysis capability , 1983 .

[28]  Samuel E. Bays,et al.  Computational Neutronics Methods and Transmutation Performance Analyses for Fast Reactors , 2007 .

[29]  M. Salvatores,et al.  Feasibility Study of a Proliferation Resistant Fuel Cycle for LWR-Based Transmutation of Transuranics , 2002 .

[30]  W. G. Halsey Advanced Fuel Cycle Initiative (AFCI) Repository Impact Evaluation FY-05 Progress Report , 2005 .

[31]  David Shropshire,et al.  Advanced fuel cycle economic sensitivity analysis , 2006 .

[32]  Mark D. DeHart,et al.  Lattice Physics Capabilities of the SCALE Code System Using TRITON , 2006 .

[33]  L. H. Roddis,et al.  Nuclear power in the world today , 1965, IEEE Spectrum.

[34]  Stephen C. Peck,et al.  Analytic Solutions of Simple Optimal Greenhouse Gas Emission Models , 1996 .

[35]  Michael A. Pope,et al.  Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles , 2008 .

[36]  Michael A. Pope,et al.  Evaluation of Heterogeneous Options: Effects of MgO versus UO2 Matrix Selection for Minor Actinide Targets in a Sodium Fast Reactor , 2008 .

[37]  Jonathan Cowie,et al.  Climate Change: An introduction to climate change , 2007 .

[38]  Robert Hill,et al.  Fuel Cycle Scenario Definition, Evaluation, and Trade-offs , 2006 .

[39]  Tyler Martin Schweitzer Improved Building Methodology and Analysis of Delay Scenarios of Advanced Nuclear Fuel Cycles with the Verifiable Fuel Cycle Simulation Model (VISION) , 2008 .

[40]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[41]  John A. Stillman Proliferation resistance metrics for separated streams of reactor-grade transuranics , 2005 .

[42]  U. S. Doe A Technology Roadmap for Generation IV Nuclear Energy Systems , 2002 .

[43]  E. Schneider,et al.  Long-Term Uranium Supply Estimates , 2008 .

[44]  Steven J. Piet,et al.  Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options , 2004 .

[45]  R. A. Wigeland,et al.  Follow-up analyses for the ANTT review. , 2006 .

[46]  David Shropshire,et al.  Advanced Fuel Cycle Cost Basis , 2007 .

[47]  Samuel E. Bays,et al.  Fast Reactor Alternative Studies: Effects of Transuranic Groupings on Metal and Oxide Sodium Fast Reactor Designs , 2007 .

[48]  Samuel E. Bays,et al.  Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors , 2007 .

[49]  Larry Lankton,et al.  Cradle to Grave , 1993 .

[50]  K. E. Seiferlein Annual Energy Review 2006 , 2007 .

[51]  B. F. Judson,et al.  Spent fuel management options at the utility site , 1985 .

[52]  T. A. Taiwo,et al.  A feasibility study of reactor-based deep-burn concepts. , 2005 .

[53]  T. H. Fanning,et al.  Separations and Transmutation Criteria to Improve Utilization of a Geologic Repository , 2006 .

[54]  T. H. Fanning,et al.  Repository impact LWR MOX and fast reactor recycling options. , 2003 .

[55]  James A. Edmonds,et al.  The Challenges and Potential of Nuclear Energy for Addressing Climate Change , 2007 .

[56]  Robert Hill,et al.  Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios. , 2008 .

[57]  Benjamin B. Cipiti,et al.  Fast Reactor Recycle Fuel Thermal Load. , 2007 .

[58]  Yim Man-Sung,et al.  Use of integrated decay heat limits to facilitate spent nuclear fuel loading to Yucca Mountain , 2007 .

[59]  Theodore H. Bauer,et al.  Modeling of the repository behavior of TRISO fuel. , 2006 .

[60]  J. J. Laidler,et al.  On-Going Comparison of Advanced Fuel Cycle Options , 2004 .

[61]  H. Hotelling The Economics of Exhaustible Resources , 1931, Journal of Political Economy.

[62]  L. C. Cadwallader,et al.  Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications , 2005 .

[63]  Samuel E. Bays,et al.  Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses , 2007 .

[64]  A. M. Yacout,et al.  System dynamics studies of advanced fuel cycle scenarios. , 2005 .

[65]  Steve Fetter,et al.  THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL , 2003 .

[66]  David Shropshire,et al.  VISION: Verifiable Fuel Cycle Simulation Model , 2009 .

[67]  Barry B. Spencer,et al.  Preliminary Multicycle Transuranic Actinide Partitioning-Transmutation Studies , 2007 .