The FCN Framework: Development and Applications

The Fuzzy Cognitive Network(FCN) framework is a proposition for the operational extension of fuzzy cognitive maps to support the close interaction with the system they describe and consequently become appropriate for adaptive decision making and control applications. They constitute a methodology for data, knowledge, and experience representation based on the exploitation of theories such as fuzzy logic and neurocomputing. This chapter presents the main theoretical results related to the FCN development based on theorems specifying the conditions for the uniqueness of solutions for the FCN concept values. Moreover, case application studies are given, each one demonstrating different aspects of the design and operation of the framework.

[1]  Mohammad A. S. Masoum,et al.  Closure on "Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking" , 2002 .

[2]  B. Kosco Differential Hebbian learning , 1987 .

[3]  W. Rudin Principles of mathematical analysis , 1964 .

[4]  Chih-Chiang Hua,et al.  Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system , 1998, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196).

[5]  Kostas Kalaitzakis,et al.  Development of a microcontroller-based, photovoltaic maximum power point tracking control system , 2001 .

[6]  Chunyan Miao,et al.  Dynamical cognitive network - an extension of fuzzy cognitive map , 2001, IEEE Trans. Fuzzy Syst..

[7]  Zhi-Qiang Liu,et al.  Interrogating the structure of fuzzy cognitive maps , 2003, Soft Comput..

[8]  U. Marchaim,et al.  Biogas processes for sustainable development , 1992 .

[9]  Manolis A. Christodoulou,et al.  Fuzzy cognitive network: A general framework , 2007, Intell. Decis. Technol..

[10]  James C. Bezdek,et al.  Pool2: a generic system for cognitive map development and decision analysis , 1989, IEEE Trans. Syst. Man Cybern..

[11]  Chung-Yuen Won,et al.  A new maximum power point tracker of photovoltaic arrays using fuzzy controller , 1994, Proceedings of 1994 Power Electronics Specialist Conference - PESC'94.

[12]  B. Kosko Differential Hebbian learning , 2008 .

[13]  Z. Salameh,et al.  Step-up maximum power point tracker for photovoltaic arrays , 1990 .

[14]  Marcelo Godoy Simões,et al.  Fuzzy optimisation based control of a solar array system , 1999 .

[15]  Avijit Dasgupta,et al.  Industrial and Hazardous Waste Treatment , 1991 .

[16]  Y.S. Boutalis,et al.  New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks , 2006, IEEE Transactions on Energy Conversion.

[17]  Sanming Zhou,et al.  Dynamic domination in fuzzy causal networks , 2006, IEEE Trans. Fuzzy Syst..

[18]  Y. Boutalis,et al.  A Fuzzy Cognitive Network Based Control Scheme for An Anaerobic Digestion Process , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[19]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Maps in modeling supervisory control systems , 2000, J. Intell. Fuzzy Syst..

[20]  D. E. Koulouriotis,et al.  Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  Yiannis S. Boutalis,et al.  A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN) , 2007 .

[22]  Florentin Smarandache,et al.  FUZZY COGNITIVE MAPS AND NEUTROSOPHIC COGNITIVE MAPS , 2003, math/0311063.

[23]  Manolis A. Christodoulou,et al.  A new method for weight updating in fuzzy cognitive maps using system feedback , 2005, ICINCO.

[24]  Vasileios Diamantis,et al.  Biochemical reaction engineering and process development in anaerobic wastewater treatment. , 2005, Advances in biochemical engineering/biotechnology.

[25]  W.-R. Zhang,et al.  A cognitive-map-based approach to the coordination of distributed cooperative agents , 1992, IEEE Trans. Syst. Man Cybern..

[26]  Voula C. Georgopoulos,et al.  A fuzzy cognitive map approach to differential diagnosis of specific language impairment , 2003, Artif. Intell. Medicine.

[27]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[28]  Hariklia N Gavala,et al.  Anaerobic granular sludge and biofilm reactors. , 2003, Advances in biochemical engineering/biotechnology.

[29]  José Aguilar,et al.  Adaptive Random Fuzzy Cognitive Maps , 2002, IBERAMIA.

[30]  Takashi Hiyama,et al.  Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control , 1995 .

[31]  Chrysostomos D. Stylios,et al.  A Soft Computing Approach for Modelling the Supervisor of Manufacturing Systems , 1999, J. Intell. Robotic Syst..

[32]  Elpiniki I. Papageorgiou,et al.  A Weight Adaptation Method for Fuzzy Cognitive Maps to a Process Control Problem , 2004, International Conference on Computational Science.

[33]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[34]  Michael N. Vrahatis,et al.  Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005, Journal of Intelligent Information Systems.

[35]  Saifur Rahman,et al.  Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant , 1998 .

[36]  N. H. Helwa,et al.  Maximum power point traking controller for PV systems using neural networks , 2005 .

[37]  Alex Chong,et al.  Fuzzy Cognitive Maps With Genetic Algorithm For Goal-Oriented Decision Support , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[38]  Basil G. Mertzios,et al.  A new method for reaching equilibrium points in fuzzy cognitive maps , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[39]  Feng Liu,et al.  Proceedings of the first international conference on Neutrosophy, neutrosophic logic, neutrosophic set, neutrosophic probability and statistics , 2003, math/0306384.

[40]  Witold Pedrycz,et al.  Genetic learning of fuzzy cognitive maps , 2005, Fuzzy Sets Syst..

[41]  Chrysostomos D. Stylios,et al.  Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..