Reduction of PDEs on domains with several unbounded directions: A first step towards modulation equations

Bifurcation problems in unbounded domains often lead to spontaneous pattern formation. A basic periodic pattern, derivable from the linearized system, is modulated by nonlinear effects on a slow time and space scale. The modulation of the amplitude is usually described by equations of Ginzburg-Landau type.To study such problems we develop a generalized Lyapunov-Schmidt reduction procedure which allows to treat the case of continuous spectra. Thus, we are able to reduce parabolic systems in plate-like domains to a lower dimensional problem, which is, to first order, a partial differential equation in the unbounded variables only, but contains also non-local terms in the nonlinearity. Using a modulation ansatz with slow time and space variables, the expansion in terms of the bifurcation parameter transfers the non-local terms into local ones involving derivatives of the amplitude function. Thus, we recover the classical modulation equations of Ginzburg-Landau type.ZusammenfassungBifurkation in unbeschränkten Gebieten führt häufig auf spontane Musterbildung. Dabei wird ein periodisches Grundmuster, das aus dem linearen System ableitbar ist, durch nichtlineare Effekte auf großen Raum- und Zeitskalen moduliert. Die Modulation der Amplitude wird meist durch die Ginzburg-Landau-Gleichung beschrieben.Für die Untersuchung solcher System entwickeln wir ein Verallgemeinerung des Lyapunov-Schmidtschen Reduktionsverfahren, das die Behandlung eines kontinuierlichen Spektrums erlaubt. Damit können wir parabolische Systeme in Plattengebieten auf ein niedrigdimensionaleres Problem zurückführen, das im Linearteil eine partielle Differentialgleichung bezüglich der unbeschränkten Variablen ist, das aber im Nichtlinearteil auch nichtlokale Terme enthält. Unter Verwendung des Modulationsansatzes mit großen Zeit- und Raumskalen führt die Entwicklung nach dem Bifurkations-parameter zu lokalen Termen, die Ableitungen der Amplitudenfunktion enthalten. Wir erhalten genau die klassischen Modulationsgleichungen vom Ginzburg-Landau-Typ.

[1]  K. Kirchgässner Wave-solutions of reversible systems and applications , 1982 .

[2]  Luc Tartar Memory Effects and Homogenization , 1990 .

[3]  R. MacKay,et al.  Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes’ family , 1992, Journal of Fluid Mechanics.

[4]  Anthony J. Roberts,et al.  The application of centre-manifold theory to the evolution of system which vary slowly in space , 1988, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[5]  A. van Harten,et al.  On the validity of the Ginzburg-Landau equation , 1991 .

[6]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[7]  P. Daniels Roll-pattern evolution in finite-amplitude Rayleigh–Beńard convection in a two-dimensional fluid layer bounded by distant sidewalls , 1984, Journal of Fluid Mechanics.

[8]  The generation of spatio-temporal chaos in large aspect ratio hydrodynamics , 1991 .

[9]  Alexander Mielke,et al.  Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders , 1991 .

[10]  Pierre Collet,et al.  The time dependent amplitude equation for the Swift-Hohenberg problem , 1990 .

[11]  A. Mielke,et al.  Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems , 1989 .

[12]  I. Procaccia,et al.  Spatio-Temporal Chaos , 1991 .

[13]  J. Hale,et al.  Shadow Systems and Attractors in Reaction-Diffusion Equations, , 1989 .

[14]  Lee A. Segel,et al.  Non-linear wave-number interaction in near-critical two-dimensional flows , 1971, Journal of Fluid Mechanics.

[15]  Waves in weakly-coupled parabolic systems , 1984 .

[16]  Guido Schneider,et al.  The validity of modulation equations for extended systems with cubic nonlinearities , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  A. Mielke,et al.  Time-periodic Ginzburg-Landau equations for one dimensional patterns with large wave length , 1992 .