Beta-representations of 0 and Pisot numbers

Let $\beta >1 $, $d$ a positive integer, and $$Z_{\beta,d}=\{z_{1} z_{2}\cdots \mid \sum_{i\ge 1}z_i \beta^{-i}=0, \; z_i \in \{-d, \ldots, d\}\}$$ be the set of infinite words having value 0 in base $\beta$ on the alphabet $\{-d, \ldots, d\}$. Based on a recent result of Feng on spectra of numbers, we prove that if the set $Z_{\beta,\lceil \beta \rceil -1}$ is recognizable by a finite B\"uchi automaton then $\beta$ is a Pisot number. As a consequence of previous results, the set $Z_{\beta, d}$ is recognizable by a finite B\"uchi automaton for every positive integer $d$ if and only if $Z_{\beta, d}$ is recognizable by a finite B\"uchi automaton for one $d \ge \lceil \beta \rceil -1$. These conditions are equivalent to the fact that $\beta$ is a Pisot number. The bound $\lceil \beta \rceil -1$ cannot be further reduced.

[1]  V. Komornik,et al.  Discrete spectra and Pisot numbers , 2011, 1103.4508.

[2]  Christiane Frougny,et al.  On-line Multiplication and Division in Real and Complex Bases , 2016, 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH).

[3]  Paul Mercat,et al.  Semi-groupes fortement automatiques , 2011, 1112.1266.

[4]  K. Lau Dimension of a Family of Singular Bernoulli Convolutions , 1993 .

[5]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[6]  M. Rigo Formal Languages, Automata and Numeration Systems 1: Introduction to Combinatorics on Words , 2014 .

[7]  Taizo Sadahiro,et al.  Beta-Expansions with Negative Bases , 2009 .

[8]  Y. Bugeaud On a property of Pisot numbers and related questions , 1996 .

[9]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[10]  J. Sakarovitch,et al.  Combinatorics, Automata and Number Theory: Number representation and finite automata , 2010 .

[11]  Christiane Frougny,et al.  Representations of numbers and finite automata , 1992, Mathematical systems theory.

[12]  Peter C. Chapin Formal languages I , 1973, CSC '73.

[13]  A. Garsia Arithmetic properties of Bernoulli convolutions , 1962 .

[14]  Jacques Sakarovitch,et al.  Automatic Conversion from Fibonacci Representation to Representation in Base φ, and a Generalization , 1999, Int. J. Algebra Comput..

[15]  De-Jun Feng On the topology of polynomials with bounded integer coefficients , 2011, 1109.1407.

[16]  W. Parry On theβ-expansions of real numbers , 1960 .

[17]  Donald E. Knuth,et al.  A imaginary number system , 1960, Commun. ACM.

[18]  Milos D. Ercegovac,et al.  On-Line Algorithms for Division and Multiplication , 1977, IEEE Transactions on Computers.

[19]  Daniel Berend,et al.  Computability by finite automata and pisot bases , 2005, Mathematical systems theory.