First synthesis of steroidal 1,2,4-trioxolanes

[1]  D. V. Kazakov,et al.  Synthesis, structure, and pharmacological activity of (7R,8S)-epoxy-(13R,17R)-trioxolane abietic acid , 2013, Russian Journal of Bioorganic Chemistry.

[2]  C. Siethoff,et al.  First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials , 2012, British journal of clinical pharmacology.

[3]  C. W. Jefford Synthetic peroxides as potent antimalarials. News and views. , 2012, Current topics in medicinal chemistry.

[4]  D. V. Kazakov,et al.  Anomalous ozonolysis product of 3β,28-di-O-acetyl-29-norlupan-20-one-O-methyloxime , 2011, Chemistry of Natural Compounds.

[5]  R. Amewu,et al.  Comparison of the reactivity of antimalarial 1,2,4,5-tetraoxanes with 1,2,4-trioxolanes in the presence of ferrous iron salts, heme, and ferrous iron salts/phosphatidylcholine. , 2011, Journal of medicinal chemistry.

[6]  D. Rawat,et al.  Medicinal chemistry perspectives of trioxanes and tetraoxanes. , 2011, Current Medicinal Chemistry.

[7]  D. V. Kazakov,et al.  Chemiluminescence during interaction of 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes with iron compounds , 2011 .

[8]  A. G. Tolstikov,et al.  N-Trifluoroacetyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline ozonides , 2011 .

[9]  D. V. Kazakov,et al.  Chemiluminescence as a base for a new approach to the study of pharmacologically promising peroxide agents , 2011 .

[10]  D. V. Kazakov,et al.  Synthesis of triterpenoid-based 1,2,4-trioxolanes and 1,2,4-dioxazolidines by ozonolysis of allobetulin derivatives , 2011 .

[11]  Christian Scheurer,et al.  Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria , 2011, Proceedings of the National Academy of Sciences.

[12]  J. Chollet,et al.  The structure-activity relationship of the antimalarial ozonide arterolane (OZ277). , 2010, Journal of medicinal chemistry.

[13]  V. Dembitsky Bioactive peroxides as potential therapeutic agents. , 2008, European journal of medicinal chemistry.

[14]  R. Prankerd,et al.  Iron-mediated degradation kinetics of substituted dispiro-1,2,4-trioxolane antimalarials. , 2007, Journal of pharmaceutical sciences.

[15]  R. Prankerd,et al.  Chemical kinetics and aqueous degradation pathways of a new class of synthetic ozonide antimalarials. , 2006, Journal of pharmaceutical sciences.

[16]  R. Haynes From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. , 2006, Current topics in medicinal chemistry.

[17]  P. O’Neill,et al.  A medicinal chemistry perspective on artemisinin and related endoperoxides. , 2004, Journal of medicinal chemistry.

[18]  L. Gerena,et al.  Mixed steroidal 1,2,4,5-tetraoxanes: antimalarial and antimycobacterial activity. , 2002, Journal of medicinal chemistry.

[19]  D. Kyle,et al.  Cholic acid derivatives as 1,2,4,5-tetraoxane carriers: structure and antimalarial and antiproliferative activity. , 2000, Journal of medicinal chemistry.

[20]  A. G. Tolstikov,et al.  Natural peroxides. Chemistry and biological activity , 1996 .

[21]  D. L. Klayman,et al.  Qinghaosu (artemisinin): an antimalarial drug from China , 1985 .