Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces

Two main results are established in this paper. First, we show that seven point correspondences are sufficient to uniquely determine from two perspective views the three-dimensional motion parameters (within a scale factor for the translations) of a rigid object with curved surfaces. The seven points should not be traversed by two planes with one plane containing the origin, nor by a cone containing the origin. Second, a set of ``essential parameters'' are introduced which uniquely determine the motion parameters up to a scale factor for the translations, and can be estimated by solving a set of linear equations which are derived from the correspondences of eight image points. The actual motion parameters can subsequently be determined by computing the singular value decomposition (SVD) of a 3×3 matrix containing the essential parameters.

[1]  J. H. Wilkinson Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .

[2]  G. Stewart Introduction to matrix computations , 1973 .

[3]  J. Limb,et al.  Estimating the Velocity of Moving Images in Television Signals , 1975 .

[4]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[5]  J. D. Robbins,et al.  Motion-compensated television coding: Part I , 1979, The Bell System Technical Journal.

[6]  C. Cafforio,et al.  Tracking moving objects in television images , 1979 .

[7]  Thomas S. Huang,et al.  Moving image restoration and registration , 1980, ICASSP.

[8]  Lee Dn,et al.  The optic flow field: the foundation of vision. , 1980 .

[9]  W F Clocksin,et al.  Perception of Surface Slant and Edge Labels from Optical Flow: A Computational Approach , 1980, Perception.

[10]  A. Meiri Correspondence: On monocular perception of 3-D moving objects , 1980 .

[11]  A. Zvi Meiri Correspondence: On monocular perception of 3-D moving objects , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Thomas S. Huang,et al.  THREE-DIMENSIONAL MOTION ESTIMATION. , 1980 .

[13]  R. Woodham,et al.  Determining the movement of objects from a sequence of images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Thomas S. Huang,et al.  Image sequence analysis , 1981 .

[15]  K. Prazdny,et al.  Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[16]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[17]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch , 1981 .

[18]  Thomas S. Huang,et al.  Three-dimensional motion estimation from image-space shifts , 1981, ICASSP.

[19]  Thomas S. Huang,et al.  Image Sequence Analysis: Motion Estimation , 1981 .

[20]  Hans-Hellmut Nagel,et al.  On 3D Reconstruction from Two Perspective Views , 1981, IJCAI.

[21]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[22]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[23]  K. Prazdny Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[24]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, II: Singular value decomposition , 1982 .

[25]  Thomas S. Huang,et al.  Interframe coding with general two-dimensional motion compensation , 1982, ICASSP.

[26]  Thomas S. Huang,et al.  Correction to "Estimating 3-D motion parameters of a rigid planar patch,II: Singular value decomposition" , 1983 .

[27]  Thomas S. Huang,et al.  Estimating three-dimensional motion parameters of a rigid planar patch, III: Finite point correspondences and the three-view problem , 1984 .