The Pseudospectral Method and Discrete Spectral Analysis

One of the focal points of the research at the Centre for Nonlinear Studies is related to the numerical simulation of the emergence, propagation and interaction of solitary waves and solitons in nonlinear dispersive media. Based on the discrete Fourier transform the pseudospectral method can be used for the numerical integration of the model equations, and the Fourier transform related discrete spectral characteristics for the analysis of the numerical results. The latter approach is called discrete spectral analysis. The main advantage of the pseudospectral method compared with the finite difference method is related to the computational costs. On the other hand, the Fourier transform related spectral characteristics carry additional information about the internal structure of the waves, which can be used for the analysis of the time-space behaviour of the numerical solutions. In the present paper several practical aspects of the application of the Fourier transform based pseudospectral method for the numerical integration of equations of different types are discussed and several examples of applications of the discrete spectral analysis are introduced.

[1]  J. Janno,et al.  Solitary waves in nonlinear microstructured materials , 2005 .

[2]  A. Rashid,et al.  Convergence Analysis of Three-Level Fourier Pseudospectral Method for Korteweg-de Vries Burgers Equation , 2006, Comput. Math. Appl..

[3]  I︠U︡riĭ K. Ėngelʹbrekht An introduction to asymmetric solitary waves , 1991 .

[4]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[5]  ON THE PROPAGATION OF SOLITARY WAVES IN MICROSTRUCTURED SOLIDS , 2004 .

[6]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[7]  I-Liang Chern,et al.  BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[8]  B. Shizgal,et al.  Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: comparison with sinc methods. , 2006, The Journal of chemical physics.

[9]  Efim Pelinovsky,et al.  Numerical modeling of the KdV random wave field , 2006 .

[10]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[11]  G. Maugin,et al.  Solitonic structures in KdV-based higher-order systems , 2001 .

[12]  Jing-Bo Chen A multisymplectic pseudospectral method for seismic modeling , 2007, Appl. Math. Comput..

[13]  Mohammad Taghi Darvishi,et al.  Spectral collocation solution of a generalized Hirota–Satsuma coupled KdV equation , 2007 .

[14]  P. Peterson,et al.  Long-time behaviour of soliton ensembles. Part I––Emergence of ensembles , 2002 .

[15]  Kai Schneider,et al.  Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume-penalization: Convergence of a dipole-wall collision , 2007, J. Comput. Phys..

[16]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[17]  J. Engelbrecht Nonlinear Wave Dynamics: Complexity and Simplicity , 1997 .

[18]  On the propagation of solitary pulses in microstructured materials , 2006 .

[19]  P. Peterson,et al.  Long-time behaviour of soliton ensembles. Part II––Periodical patterns of trajectories , 2003 .

[20]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[21]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[22]  B. Guo,et al.  Composite generalized Laguerre--Legendre pseudospectral method for Fokker--Planck equation in an infinite channel , 2008 .

[23]  Andrus Salupere,et al.  On solitons in microstructured solids and granular materials , 2005, Math. Comput. Simul..

[24]  B. Zubik-Kowal,et al.  An iterated pseudospectral method for delay partial differential equations , 2005 .

[25]  R. Gallego,et al.  Pseudospectral versus finite-difference schemes in the numerical integration of stochastic models of surface growth. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J. Kalda,et al.  On the KdV soliton formation and discrete spectral analysis , 1996 .

[27]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[28]  K. Tamm,et al.  On the interaction of deformation waves in microstructured solids; 93–99 , 2007, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[29]  S. Sarra A Pseudospectral Method with Edge Detection-Free Postprocessing for Two-Dimensional Hyperbolic Heat Transfer , 2008 .

[30]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[31]  R. S. Stepleman,et al.  Scientific computing : applications of mathematics and computing to the physical sciences , 1983 .

[32]  K. Tamm,et al.  Numerical simulation of interaction of solitary deformation waves in microstructured solids , 2008 .

[33]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[34]  Serge Dos Santos,et al.  A two-dimensional pseudospectral model for time reversal and nonlinear elastic wave spectroscopy. , 2007, The Journal of the Acoustical Society of America.

[35]  A. Berezovski,et al.  Nonlinear deformation waves in solids and dispersion , 2007 .

[36]  Jinhua Guo,et al.  Parallel implementation of the split-step and the pseudospectral methods for solving higher KdV equation , 2003, Math. Comput. Simul..

[37]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[38]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[39]  P. Giovine,et al.  Dynamics and wave propagation in dilatant granular materials , 1995 .

[40]  John P. Boyd,et al.  Fourier pseudospectral method with Kepler mapping for travelling waves with discontinuous slope: Application to corner waves of the Ostrovsky-Hunter equation and equatorial Kelvin waves in the four-mode approximation , 2006, Appl. Math. Comput..

[41]  Andrus Salupere,et al.  On the long-time behaviour of soliton ensembles , 2003, Math. Comput. Simul..

[42]  J. Engelbrecht,et al.  Waves in microstructured materials and dispersion , 2005 .

[43]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[44]  Andrus Salupere,et al.  Propagation of sech2-type solitary waves in hierarchical KdV-type systems , 2009, Math. Comput. Simul..

[45]  Jinhee Lee,et al.  Free vibration analysis of non-cylindrical helical springs by the pseudospectral method , 2007 .

[46]  Bengt Fornberg,et al.  A Pseudospectral Fictitious Point Method for High Order Initial-Boundary Value Problems , 2006, SIAM J. Sci. Comput..

[47]  Velarde,et al.  Localized finite-amplitude disturbances and selection of solitary waves , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  J. Engelbrecht,et al.  Nonlinear waves in a layer with energy influx , 1992 .

[49]  Ricardo Rosa,et al.  Chaos for a damped and forced KdV equation , 2004 .

[50]  J. Engelbrecht,et al.  On modelling wave motion in microstructured solids , 2009 .

[51]  J. Engelbrecht,et al.  On the problem of periodicity and hidden solitons for the KdV model. , 2005, Chaos.

[52]  J. Engelbrecht,et al.  On the possible amplification of nonlinear seismic waves , 1988 .

[53]  Weizhu Bao,et al.  Computing Ground States of Spin-1 Bose-Einstein Condensates by the Normalized Gradient Flow , 2007, SIAM J. Sci. Comput..

[54]  G. Maugin,et al.  Korteweg-de Vries soliton detection from a harmonic input , 1994 .

[55]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[56]  P. G. Drazin,et al.  Solitons: Motion picture index , 1989 .

[57]  J. Engelbrecht Nonlinear Wave Dynamics , 1997 .

[58]  A. Salupere,et al.  Propagation of sech2-type solitary waves in higher-order KdV-type systems , 2005 .

[59]  Bernie D. Shizgal,et al.  A pseudospectral method of solution of Fisher's equation , 2006 .

[60]  David Montgomery,et al.  An easily implemented task-based parallel scheme for the Fourier pseudospectral solver applied to 2D Navier–Stokes turbulence , 2004 .

[61]  Anastasios Bezerianos,et al.  Stationary Pulses and Wave Front Formation in an Excitable Medium , 2000 .

[62]  H. Dai,et al.  Solitary shock waves and other travelling waves in a general compressible hyperelastic rod , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  Philippe Guyenne,et al.  A High-Order Spectral Method for Nonlinear Water Waves over Moving Bottom Topography , 2007, SIAM J. Sci. Comput..

[64]  Li Yang,et al.  Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..

[65]  J. Janno,et al.  An inverse solitary wave problem related to microstructured materials , 2005 .

[66]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .