Biological Diversity of Prokaryotic Type IV Secretion Systems

SUMMARY Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

[1]  C. Dehio,et al.  Functional interactions between type IV secretion systems involved in DNA transfer and virulence. , 2005, Microbiology.

[2]  D. Dubnau,et al.  DNA transport during transformation. , 2003, Frontiers in bioscience : a journal and virtual library.

[3]  C. Baron,et al.  VirB1 Orthologs from Brucella suis and pKM101 Complement Defects of the Lytic Transglycosylase Required for Efficient Type IV Secretion from Agrobacterium tumefaciens , 2004, Journal of bacteriology.

[4]  S. Andersson,et al.  The genomic and metabolic diversity of Rickettsia. , 2007, Research in Microbiology.

[5]  Shiraz A. Shah,et al.  Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. , 2009, Biochemical Society transactions.

[6]  R. Meyer,et al.  The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer , 1997, Molecular microbiology.

[7]  Gabriel Waksman,et al.  Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Grossman,et al.  Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis , 2007, Molecular microbiology.

[9]  H. Ishikawa,et al.  Genes for the Type IV Secretion System in an Intracellular Symbiont, Wolbachia, a Causative Agent of Various Sexual Alterations in Arthropods , 2000, Journal of bacteriology.

[10]  K. Derbyshire,et al.  The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Derbyshire,et al.  Chromosomal DNA transfer in Mycobacterium smegmatis is mechanistically different from classical Hfr chromosomal DNA transfer , 2005, Molecular microbiology.

[12]  E. Cascales,et al.  Biogenesis, architecture, and function of bacterial type IV secretion systems. , 2005, Annual review of microbiology.

[13]  Amy A. Rambow-Larsen,et al.  The PtlE Protein of Bordetella pertussis Has Peptidoglycanase Activity Required for Ptl-Mediated Pertussis Toxin Secretion , 2002, Journal of bacteriology.

[14]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[15]  A. Grossman,et al.  Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Schildbach,et al.  Structural insights into single-stranded DNA binding and cleavage by F factor TraI. , 2003, Structure.

[17]  K. Derbyshire,et al.  The specialized secretory apparatus ESX‐1 is essential for DNA transfer in Mycobacterium smegmatis , 2008, Molecular microbiology.

[18]  M. Couturier,et al.  Mobilization Function of the pBHR1 Plasmid, a Derivative of the Broad-Host-Range Plasmid pBBR1 , 2001, Journal of bacteriology.

[19]  E. Cascales,et al.  Agrobacterium ParA/MinD‐like VirC1 spatially coordinates early conjugative DNA transfer reactions , 2007, The EMBO journal.

[20]  L. Hodges,et al.  Agrobacterium rhizogenes GALLS Protein Contains Domains for ATP Binding, Nuclear Localization, and Type IV Secretion , 2006, Journal of bacteriology.

[21]  J Patrick Bardill,et al.  IcmS‐dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system , 2005, Molecular microbiology.

[22]  K. Kane,et al.  DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. , 2009, FEMS microbiology reviews.

[23]  G. Dunny The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell–cell signalling, gene transfer, complexity and evolution , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  K. Derbyshire,et al.  Plasmid DNA transfer in Mycobacterium smegmatis involves novel DNA rearrangements in the recipient, which can be exploited for molecular genetic studies , 2004, Molecular microbiology.

[25]  Xiaodong Bai,et al.  Identification and characterization of traE genes of Spiroplasma kunkelii. , 2004, Gene.

[26]  K. Wise,et al.  Molecular Genetic Analysis of ICEF, an Integrative Conjugal Element That Is Present as a Repetitive Sequence in the Chromosome of Mycoplasma fermentans PG18 , 2002, Journal of bacteriology.

[27]  C. Baron,et al.  The N- and C-Terminal Portions of theAgrobacterium VirB1 Protein Independently Enhance Tumorigenesis , 2000, Journal of bacteriology.

[28]  S. Farrand,et al.  TraG from RP4 and TraG and VirD4 from Ti Plasmids Confer Relaxosome Specificity to the Conjugal Transfer System of pTiC58 , 2000, Journal of bacteriology.

[29]  F. Cornet,et al.  FtsK, a literate chromosome segregation machine , 2007, Molecular microbiology.

[30]  E. Spudich,et al.  VirB7 Lipoprotein Is Exocellular and Associates with the Agrobacterium tumefaciens T Pilus , 2001, Journal of bacteriology.

[31]  Tracy Palmer,et al.  Secretion by numbers: protein traffic in prokaryotes , 2006, Molecular microbiology.

[32]  A. Monzingo,et al.  The structure of the minimal relaxase domain of MobA at 2.1 A resolution. , 2007, Journal of molecular biology.

[33]  Roland Hartig,et al.  Helicobacter exploits integrin for type IV secretion and kinase activation , 2007, Nature.

[34]  F. de la Cruz,et al.  A new domain of conjugative relaxase TrwC responsible for efficient oriT‐specific recombination on minimal target sequences , 2006, Molecular microbiology.

[35]  R. Meyer The R1162 Mob Proteins Can Promote Conjugative Transfer from Cryptic Origins in the Bacterial Chromosome , 2008, Journal of bacteriology.

[36]  P. Christie,et al.  Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes , 1994, Journal of bacteriology.

[37]  J. Kristjánsson,et al.  Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. , 1998, Plasmid.

[38]  A. Das,et al.  Subcellular localization of the Agrobacterium tumefaciens T‐DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore , 2000, Molecular microbiology.

[39]  E. Cascales,et al.  Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Lucinda E. Maddera,et al.  F-pili dynamics by live-cell imaging , 2008, Proceedings of the National Academy of Sciences.

[41]  M. Selbach,et al.  Role of type IV secretion in Helicobacter pylori pathogenesis , 2008, Cellular microbiology.

[42]  Dana L. Miller,et al.  Subdomain organization and catalytic residues of the F factor TraI relaxase domain. , 2003, Biochimica et biophysica acta.

[43]  K. Brayton,et al.  Immunogenicity of Anaplasma marginale Type IV Secretion System Proteins in a Protective Outer Membrane Vaccine , 2007, Infection and Immunity.

[44]  D. Dubnau,et al.  A Macromolecular Complex Formed by a Pilin-like Protein in Competent Bacillus subtilis* , 2006, Journal of Biological Chemistry.

[45]  Y. Rikihisa,et al.  Sequence and Expression Analysis of virB9 of the Type IV Secretion System of Ehrlichia canis Strains in Ticks, Dogs, and Cultured Cells , 2003, Infection and Immunity.

[46]  M Simone,et al.  The carboxy‐terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB‐encoded type IV transport system , 2001, Molecular microbiology.

[47]  S. Simon,et al.  Enterococcus faecalis Bearing Aggregation Substance Is Resistant to Killing by Human Neutrophils despite Phagocytosis and Neutrophil Activation , 1999, Infection and Immunity.

[48]  W. L. Teng,et al.  The Putative Coupling Protein TcpA Interacts with Other pCW3-Encoded Proteins To Form an Essential Part of the Conjugation Complex , 2009, Journal of bacteriology.

[49]  E. Orlova,et al.  Structure of a Type IV Secretion System Core Complex , 2009, Science.

[50]  Evidence of a conjugal erythromycin resistance element in the Lyme disease spirochete Borrelia burgdorferi. , 2006, International journal of antimicrobial agents.

[51]  L. Marraffini,et al.  Protein sorting to the cell wall envelope of Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[52]  R. Heinzen,et al.  Coxiella type IV secretion and cellular microbiology. , 2009, Current opinion in microbiology.

[53]  P. Zambryski,et al.  Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Koraimann,et al.  Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. , 2005, Microbiology.

[55]  A. Vergunst,et al.  Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Clewell,et al.  Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. , 1995, Trends in microbiology.

[57]  W. Keller,et al.  The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. , 2006, Microbiology.

[58]  C. Baron,et al.  Identification of the VirB4-VirB8-VirB5-VirB2 Pilus Assembly Sequence of Type IV Secretion Systems* , 2005, Journal of Biological Chemistry.

[59]  R. Haas,et al.  Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system , 2001, Molecular microbiology.

[60]  R. Kotin,et al.  The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct DNA recognition interfaces. , 2004, Molecular cell.

[61]  D. O’Callaghan,et al.  Interactions between Brucella suis VirB8 and Its Homolog TraJ from the Plasmid pSB102 Underline the Dynamic Nature of Type IV Secretion Systems , 2009, Journal of bacteriology.

[62]  J. van der Oost,et al.  Two novel conjugative plasmids from a single strain of Sulfolobus. , 2006, Microbiology.

[63]  M. Blaser,et al.  Plasticity of Repetitive DNA Sequences within a Bacterial (Type IV) Secretion System Component , 2003, The Journal of experimental medicine.

[64]  F. Fang,et al.  Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. , 2007, Genes & development.

[65]  Z. Ding,et al.  Activities of virE1 and the VirE1 Secretion Chaperone in Export of the Multifunctional VirE2 Effector via an Agrobacterium Type IV Secretion Pathway , 2001, Journal of bacteriology.

[66]  G. Rivas,et al.  ATPase Activity and Oligomeric State of TrwK, the VirB4 Homologue of the Plasmid R388 Type IV Secretion System , 2008, Journal of bacteriology.

[67]  G. Churchward,et al.  The Integrase of the Conjugative Transposon Tn916 Directs Strand- and Sequence-Specific Cleavage of the Origin of Conjugal Transfer, oriT, by the Endonuclease Orf20 , 2006, Journal of bacteriology.

[68]  Y. Rikihisa,et al.  Regulation of Type IV Secretion Apparatus Genes during Ehrlichia chaffeensis Intracellular Development by a Previously Unidentified Protein , 2008, Journal of bacteriology.

[69]  V. Barbe,et al.  A New Integrative Conjugative Element Occurs in Mycoplasma agalactiae as Chromosomal and Free Circular Forms , 2006, Journal of bacteriology.

[70]  G. Pozzi,et al.  Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. , 2002, Gene.

[71]  R. Garrett,et al.  Genomic comparison of archaeal conjugative plasmids from Sulfolobus. , 2004, Archaea.

[72]  Vincent Burrus,et al.  Shaping bacterial genomes with integrative and conjugative elements. , 2004, Research in microbiology.

[73]  T. Bächi,et al.  Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. , 1991, Journal of structural biology.

[74]  I. Rosenshine,et al.  The mechanism of DNA transfer in the mating system of an archaebacterium. , 1989, Science.

[75]  D. Burns,et al.  Evidence for a Ninth Gene, ptlI, in the Locus Encoding the Pertussis Toxin Secretion System of Bordetella pertussis and Formation of a PtlI-PtlF Complex* , 1996, The Journal of Biological Chemistry.

[76]  J. Gouzy,et al.  The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome , 2008, BMC Genomics.

[77]  E. Grohmann,et al.  Expression of the mobM gene of the streptococcal plasmid pMV158 in Lactococcus lactis subsp. lactis. , 1999, FEMS microbiology letters.

[78]  C. Lartigue,et al.  Being Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial Genome , 2007, PLoS genetics.

[79]  M. Roberts,et al.  Conjugal transfer of transposon Tn916 from Streptococcus faecalis to Mycoplasma hominis , 1987, Journal of bacteriology.

[80]  Xiaomin Hu,et al.  Distribution, Diversity, and Potential Mobility of Extrachromosomal Elements Related to the Bacillus anthracis pXO1 and pXO2 Virulence Plasmids , 2009, Applied and Environmental Microbiology.

[81]  C. Baron,et al.  The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. , 2007, Microbiology.

[82]  W. L. Teng,et al.  Functional Characterization and Localization of the TcpH Conjugation Protein from Clostridium perfringens , 2008, Journal of bacteriology.

[83]  Michael J Ellison,et al.  Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli , 2008, Molecular microbiology.

[84]  E. D. Cambronne,et al.  The Legionella IcmS–IcmW protein complex is important for Dot/Icm‐mediated protein translocation , 2004, Molecular microbiology.

[85]  F. de la Cruz,et al.  Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[86]  C. Kado,et al.  Genetic and Environmental Factors Affecting T-Pilin Export and T-Pilus Biogenesis in Relation to Flagellation ofAgrobacterium tumefaciens , 2000, Journal of bacteriology.

[87]  F. Gomis-Rüth,et al.  Structure of TrwB, a gatekeeper in bacterial conjugation. , 2001, The international journal of biochemistry & cell biology.

[88]  R. Lurz,et al.  Enzymology of Type IV Macromolecule Secretion Systems: the Conjugative Transfer Regions of Plasmids RP4 and R388 and the cag Pathogenicity Island of Helicobacter pylori Encode Structurally and Functionally Related Nucleoside Triphosphate Hydrolases , 2000, Journal of bacteriology.

[89]  A. Das,et al.  Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[90]  K. Miura,et al.  Four VirB6 Paralogs and VirB9 Are Expressed and Interact in Ehrlichia chaffeensis-Containing Vacuoles , 2008, Journal of bacteriology.

[91]  R. Meyer,et al.  The R1162 relaxase/primase contains two, type IV transport signals that require the small plasmid protein MobB , 2007, Molecular microbiology.

[92]  F. de la Cruz,et al.  Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies , 2007, Molecular microbiology.

[93]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[94]  F. de la Cruz,et al.  The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB , 2006, FEBS letters.

[95]  Shiraz A. Shah,et al.  CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties , 2009, Molecular microbiology.

[96]  G. Koraimann,et al.  GroEL Plays a Central Role in Stress-Induced Negative Regulation of Bacterial Conjugation by Promoting Proteolytic Degradation of the Activator Protein TraJ , 2007, Journal of bacteriology.

[97]  J. V. van Dijl,et al.  Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system , 2008, Molecular microbiology.

[98]  G. Waksman,et al.  A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. , 2006, Journal of molecular biology.

[99]  M. Waldor,et al.  Determinants of Entry Exclusion within Eex and TraG Are Cytoplasmic , 2007, Journal of bacteriology.

[100]  M. Kalkum,et al.  Protein circlets as sex pilus subunits. , 2004, Current protein & peptide science.

[101]  E. Cascales,et al.  Agrobacterium tumefaciens VirB9, an Outer-Membrane-Associated Component of a Type IV Secretion System, Regulates Substrate Selection and T-Pilus Biogenesis , 2005, Journal of bacteriology.

[102]  P. Christie,et al.  Agrobacterium tumefaciens VirB6 Protein Participates in Formation of VirB7 and VirB9 Complexes Required for Type IV Secretion , 2003, Journal of bacteriology.

[103]  E. Grohmann,et al.  Conjugative Plasmid Transfer in Gram-Positive Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[104]  P. Glaser,et al.  Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of Streptococcus agalactiae , 2008, Proceedings of the National Academy of Sciences.

[105]  J. Celli,et al.  Organelle robbery: Brucella interactions with the endoplasmic reticulum. , 2004, Current opinion in microbiology.

[106]  J. Glover,et al.  Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon–helix–helix DNA-binding fold , 2009, Proceedings of the National Academy of Sciences.

[107]  Y. Rikihisa,et al.  Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl‐1 to facilitate infection † , 2007, Cellular microbiology.

[108]  R. Heinzen,et al.  Host cell-free growth of the Q fever bacterium Coxiella burnetii , 2009, Proceedings of the National Academy of Sciences.

[109]  E. Cascales,et al.  Structural and dynamic properties of bacterial Type IV secretion systems (Review) , 2005, Molecular membrane biology.

[110]  Guillaume Pavlovic,et al.  Conjugative transposons: the tip of the iceberg , 2002, Molecular microbiology.

[111]  C. Baron,et al.  Targeting bacterial secretion systems: benefits of disarmament in the microcosm. , 2007, Infectious disorders drug targets.

[112]  J. P. Dillard,et al.  Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system , 2005, Molecular microbiology.

[113]  Y. Rikihisa,et al.  Characterization and Transcriptional Analysis of Gene Clusters for a Type IV Secretion Machinery in Human Granulocytic and Monocytic Ehrlichiosis Agents , 2002, Infection and Immunity.

[114]  Jan Löwe,et al.  Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. , 2006, Molecular cell.

[115]  D. Hecht,et al.  Interaction of Bacteroides fragilis pLV22a relaxase and transfer DNA with Escherichia coli RP4‐TraG coupling protein , 2007, Molecular microbiology.

[116]  F. de la Cruz,et al.  Structure and role of coupling proteins in conjugal DNA transfer. , 2002, Research in microbiology.

[117]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[118]  A. Grossman,et al.  Identification of the Origin of Transfer (oriT) and DNA Relaxase Required for Conjugation of the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis , 2007, Journal of bacteriology.

[119]  R. Heinzen,et al.  Characterization of a Coxiella burnetii ftsZ Mutant Generated by Himar1 Transposon Mutagenesis , 2008, Journal of bacteriology.

[120]  G. Koraimann,et al.  Expression and Assembly of a Functional Type IV Secretion System Elicit Extracytoplasmic and Cytoplasmic Stress Responses in Escherichia coli , 2006, Journal of bacteriology.

[121]  M. Rohde,et al.  A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system , 2003, Molecular microbiology.

[122]  W. Peng,et al.  VirE1 is a specific molecular chaperone for the exported single‐stranded‐DNA‐binding protein VirE2 in Agrobacterium , 1999, Molecular microbiology.

[123]  Wilbert Bitter,et al.  Type VII secretion — mycobacteria show the way , 2007, Nature Reviews Microbiology.

[124]  D. Dubnau,et al.  The Ins and Outs of DNA Transfer in Bacteria , 2005, Science.

[125]  E. Lanka,et al.  TraJ protein of plasmid RP4 binds to a 19-base pair invert sequence repetition within the transfer origin. , 1989, The Journal of biological chemistry.

[126]  V. Kapur,et al.  Characterization of the Pheromone Response of the Enterococcus faecalis Conjugative Plasmid pCF10: Complete Sequence and Comparative Analysis of the Transcriptional and Phenotypic Responses of pCF10-Containing Cells to Pheromone Induction , 2005, Journal of bacteriology.

[127]  G. Spudich,et al.  Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[128]  R. Haas,et al.  Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. , 2003, International journal of medical microbiology : IJMM.

[129]  C. Baron,et al.  The Brucella suis Type IV Secretion System Assembles in the Cell Envelope of the Heterologous Host Agrobacterium tumefaciens and Increases IncQ Plasmid pLS1 Recipient Competence , 2006, Infection and Immunity.

[130]  C. Dehio Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction , 2008, Cellular microbiology.

[131]  R. Lurz,et al.  Maturation of IncP Pilin Precursors Resembles the Catalytic Dyad-Like Mechanism of Leader Peptidases , 2000, Journal of bacteriology.

[132]  G. Waksman,et al.  Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[133]  D. Voronin,et al.  Genetic and Functional Characterization of the Type IV Secretion System in Wolbachia , 2008, Journal of bacteriology.

[134]  C. Drainas,et al.  A classification scheme for mobilization regions of bacterial plasmids. , 2004, FEMS microbiology reviews.

[135]  K. Sjölander,et al.  Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[136]  K. Dybvig,et al.  Gene transfer in Mycoplasma arthritidis: transformation, conjugal transfer of Tn916, and evidence for a restriction system recognizing AGCT , 1996, Journal of bacteriology.

[137]  S. Savvides,et al.  Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. , 2000, Molecular cell.

[138]  M. Clarke,et al.  Host cell‐dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila , 2007, Cellular microbiology.

[139]  E. Cascales,et al.  The versatile bacterial type IV secretion systems , 2003, Nature Reviews Microbiology.

[140]  E. Egelman,et al.  The structure of F-pili. , 2009, Journal of molecular biology.

[141]  L. Frost,et al.  Towards a systems biology approach to study type II/IV secretion systems. , 2008, Biochimica et biophysica acta.

[142]  Fernando de la Cruz,et al.  The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase , 2001, Nature.

[143]  Gabriel Waksman,et al.  TraG-Like Proteins of DNA Transfer Systems and of the Helicobacter pylori Type IV Secretion System: Inner Membrane Gate for Exported Substrates? , 2002, Journal of bacteriology.

[144]  Andreas B. den Hartigh,et al.  VirB3 to VirB6 and VirB8 to VirB11, but Not VirB7, Are Essential for Mediating Persistence of Brucella in the Reticuloendothelial System , 2008, Journal of bacteriology.

[145]  H. Nagai,et al.  Show me the substrates: modulation of host cell function by type IV secretion systems , 2003, Cellular microbiology.

[146]  Bruno S. Sobral,et al.  An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved , 2009, PloS one.

[147]  Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. , 2000 .

[148]  C. Roy,et al.  Ankyrin Repeat Proteins Comprise a Diverse Family of Bacterial Type IV Effectors , 2008, Science.

[149]  P. Silverman Towards a structural biology of bacterial conjugation , 1997, Molecular microbiology.

[150]  L. Guzmán,et al.  The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. , 1997, Journal of molecular biology.

[151]  K. Nguyen,et al.  LpqM, a Mycobacterial Lipoprotein-Metalloproteinase, Is Required for Conjugal DNA Transfer in Mycobacterium smegmatis , 2009, Journal of bacteriology.

[152]  Stanley N Cohen,et al.  Unraveling the essential role in conjugation of the Tra protein of Streptomyces lividans plasmid pIJ101 , 2001, Antonie van Leeuwenhoek.

[153]  G. Waksman,et al.  VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? , 2008, Trends in microbiology.

[154]  M. Waldor,et al.  Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. , 2005, Developmental cell.

[155]  M. Gilmour,et al.  Cellular location and temperature‐dependent assembly of IncHI1 plasmid R27‐encoded TrhC‐associated conjugative transfer protein complexes , 2001, Molecular microbiology.

[156]  Ariel B. Lindner,et al.  Neurokinin 1 Receptor Antagonism as a Possible Therapy for Alcoholism , 2008, Science.

[157]  Z. Ding,et al.  The outs and ins of bacterial type IV secretion substrates. , 2003, Trends in microbiology.

[158]  S. C. Winans,et al.  Conjugal transfer system of the IncN plasmid pKM101 , 1985, Journal of bacteriology.

[159]  G. Waksman,et al.  Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis , 2009, Molecular microbiology.

[160]  S. Simon,et al.  Enterococcus faecalis aggregation substance promotes opsonin-independent binding to human neutrophils via a complement receptor type 3-mediated mechanism. , 1999, FEMS immunology and medical microbiology.

[161]  B. Dreiseikelmann,et al.  The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro , 1997, Journal of bacteriology.

[162]  C. Waters,et al.  An amino‐terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid , 2004, Molecular microbiology.

[163]  F. Gomis-Rüth,et al.  Cut and move: protein machinery for DNA processing in bacterial conjugation. , 2006, Current opinion in structural biology.

[164]  A. Das,et al.  Functional Analysis of the Agrobacterium tumefaciens T-DNA Transport Pore Protein VirB8 , 2001, Journal of bacteriology.

[165]  E. Cascales,et al.  Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate , 2004, Science.

[166]  A. Yim,et al.  The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[167]  P. Christie,et al.  Role of Agrobacterium VirB11 ATPase in T-Pilus Assembly and Substrate Selection , 2001, Journal of bacteriology.

[168]  F. de la Cruz,et al.  Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation , 1997, Molecular and General Genetics MGG.

[169]  J. Celli,et al.  A Legionella pneumophila Effector Protein Encoded in a Region of Genomic Plasticity Binds to Dot/Icm-Modified Vacuoles , 2009, PLoS pathogens.

[170]  Mario Juhas,et al.  Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence , 2008, Cellular microbiology.

[171]  E. Lanka,et al.  Enzymology of DNA transfer by conjugative mechanisms. , 1996, Progress in nucleic acid research and molecular biology.

[172]  R. Sauer,et al.  TraY proteins of F and related episomes are members of the Arc and Mnt repressor family. , 1990, Journal of molecular biology.

[173]  Thomas F Meyer,et al.  Type IV secretion systems and their effectors in bacterial pathogenesis. , 2006, Current opinion in microbiology.

[174]  Daniel M. Stoebel,et al.  Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. , 2008, Microbiology.

[175]  R. Haas,et al.  Functional and Topological Characterization of Novel Components of the comB DNA Transformation Competence System in Helicobacter pylori , 2006, Journal of bacteriology.

[176]  D. Ferguson,et al.  Novel Type IV Secretion System Involved in Propagation of Genomic Islands , 2006, Journal of bacteriology.

[177]  F. D. Johnson,et al.  Molecular characterization of an operon required for pertussis toxin secretion. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[178]  P. Christie,et al.  The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface , 1997, Journal of bacteriology.

[179]  G. Dunny,et al.  Enterococcus faecalis PcfC, a Spatially Localized Substrate Receptor for Type IV Secretion of the pCF10 Transfer Intermediate , 2008, Journal of bacteriology.

[180]  C. Lange,et al.  Genomics and functional genomics with haloarchaea , 2008, Archives of Microbiology.

[181]  F. de la Cruz,et al.  DNA binding properties of protein TrwA, a possible structural variant of the Arc repressor superfamily. , 2004, Biochimica et biophysica acta.

[182]  G. Koraimann,et al.  Thirty-Eight C-Terminal Amino Acids of the Coupling Protein TraD of the F-Like Conjugative Resistance Plasmid R1 Are Required and Sufficient To Confer Binding to the Substrate Selector Protein TraM , 2004, Journal of bacteriology.

[183]  L. Frost,et al.  Mutations in the C-Terminal Region of TraM Provide Evidence for In Vivo TraM-TraD Interactions during F-Plasmid Conjugation , 2005, Journal of bacteriology.

[184]  G. Mahairas,et al.  Genetic exchange of transposon and integrative plasmid markers in Mycoplasma pulmonis , 1990, Journal of bacteriology.

[185]  K. Dybvig,et al.  Gene Transfer in Mycoplasma pulmonis , 2002, Journal of bacteriology.

[186]  A. Binns,et al.  Functional Subsets of the VirB Type IV Transport Complex Proteins Involved in the Capacity of Agrobacterium tumefaciens To Serve as a Recipient in virB-Mediated Conjugal Transfer of Plasmid RSF1010 , 2003, Journal of bacteriology.

[187]  Jean-Michel Claverie,et al.  Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens , 2006, PLoS genetics.

[188]  P. Zambryski,et al.  VirB1* Promotes T-Pilus Formation in the vir-Type IV Secretion System of Agrobacterium tumefaciens , 2007, Journal of bacteriology.

[189]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[190]  T. Meulia,et al.  Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. , 2003, Journal of invertebrate pathology.

[191]  A. Binns,et al.  Activity of the Agrobacterium T-DNA transfer machinery is affected by virB gene products. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[192]  R. Isberg,et al.  Members of a Legionella pneumophila Family of Proteins with ExoU (Phospholipase A) Active Sites Are Translocated to Target Cells , 2006, Infection and Immunity.

[193]  J. Vogel,et al.  The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm‐dependent intracellular growth , 2006, Molecular microbiology.

[194]  L. Frost,et al.  F factor conjugation is a true type IV secretion system. , 2003, FEMS microbiology letters.

[195]  Christoph Dehio,et al.  A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[196]  J. Claverie,et al.  The Genome Sequence of Rickettsia felis Identifies the First Putative Conjugative Plasmid in an Obligate Intracellular Parasite , 2005, PLoS biology.

[197]  C. Montecucco,et al.  Interaction with CagF Is Required for Translocation of CagA into the Host via the Helicobacter pylori Type IV Secretion System , 2006, Infection and Immunity.

[198]  T. Raivio MicroReview: Envelope stress responses and Gram‐negative bacterial pathogenesis , 2005, Molecular microbiology.

[199]  N. Croucher,et al.  Genome Watch: Breaking the ICE , 2009, Nature Reviews Microbiology.

[200]  Z. Ding,et al.  VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens , 2003, Molecular microbiology.

[201]  C. Roy,et al.  Effector proteins translocated by Legionella pneumophila: strength in numbers. , 2007, Trends in microbiology.

[202]  G. Schröder,et al.  The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. , 2005, Plasmid.

[203]  A. Osborn,et al.  When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. , 2002, Plasmid.

[204]  R. Heinzen,et al.  The Coxiella burnetii Ankyrin Repeat Domain-Containing Protein Family Is Heterogeneous, with C-Terminal Truncations That Influence Dot/Icm-Mediated Secretion , 2009, Journal of bacteriology.

[205]  C. Hew,et al.  Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus , 2007, Proceedings of the National Academy of Sciences.

[206]  R. Garrett,et al.  Characterization and transcriptional analysis of two gene clusters for type IV secretion machinery in Wolbachia of Armadillidium vulgare. , 2008, Research in microbiology.

[207]  Eugene V. Koonin,et al.  Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria , 1992, Nucleic Acids Res..

[208]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[209]  R. Garrett,et al.  pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota , 2000, Journal of bacteriology.

[210]  N. Ismail,et al.  Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events , 2008, Nature Reviews Microbiology.

[211]  P. Zambryski,et al.  Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[212]  M. Watarai,et al.  Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth , 2001, Molecular microbiology.

[213]  K. Shirasu,et al.  The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein , 1994, Journal of bacteriology.

[214]  J. Glover,et al.  Structural basis of specific TraD–TraM recognition during F plasmid‐mediated bacterial conjugation , 2008, Molecular microbiology.

[215]  G. Schröder,et al.  TraG-Like Proteins of Type IV Secretion Systems: Functional Dissection of the Multiple Activities of TraG (RP4) and TrwB (R388) , 2003, Journal of bacteriology.

[216]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[217]  Henk Bolhuis,et al.  Actinomycete integrative and conjugative elements , 2008, Antonie van Leeuwenhoek.

[218]  A. Flower The SecY translocation complex: convergence of genetics and structure. , 2007, Trends in microbiology.

[219]  M. Tomich,et al.  The tad locus: postcards from the widespread colonization island , 2007, Nature Reviews Microbiology.

[220]  H. Tettelin,et al.  Extensive genomic diversity of closely related Wolbachia strains. , 2009, Microbiology.

[221]  E. Grohmann,et al.  A Type IV-Secretion-Like System Is Required for Conjugative DNA Transport of Broad-Host-Range Plasmid pIP501 in Gram-Positive Bacteria , 2007, Journal of bacteriology.

[222]  M. Ehrlich,et al.  A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria , 2009, Cellular microbiology.

[223]  R. Felsheim,et al.  Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis , 2008, BMC Genomics.

[224]  A. Das,et al.  The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole , 2004, Molecular microbiology.

[225]  Jonathan Crabtree,et al.  Comparative Genomics of Emerging Human Ehrlichiosis Agents , 2006, PLoS genetics.

[226]  J. Carazo,et al.  Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[227]  P. Glaser,et al.  Atypical association of DDE transposition with conjugation specifies a new family of mobile elements , 2009, Molecular microbiology.

[228]  P. Christie,et al.  The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface , 1996, Journal of bacteriology.

[229]  R. E. Webster,et al.  Localization of TraC, a protein involved in assembly of the F conjugative pilus , 1992, Journal of bacteriology.

[230]  F. Goñi,et al.  Role of the Transmembrane Domain in the Stability of TrwB, an Integral Protein Involved in Bacterial Conjugation* , 2004, Journal of Biological Chemistry.

[231]  M. Gilmour,et al.  Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. , 2007, Microbiology.

[232]  Samta Jain,et al.  A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae , 2007, Molecular microbiology.

[233]  Fernando de la Cruz,et al.  The diversity of conjugative relaxases and its application in plasmid classification. , 2009, FEMS microbiology reviews.

[234]  B. Roe,et al.  Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. , 2005, Plasmid.

[235]  Christopher D Thomas,et al.  Reconstitution of a Staphylococcal Plasmid-Protein Relaxation Complex In Vitro , 2004, Journal of bacteriology.

[236]  A. Bergmann,et al.  TraA and its N-terminal relaxase domain of the Gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution. , 2005, The Biochemical journal.

[237]  D. Crook,et al.  Genomic islands: tools of bacterial horizontal gene transfer and evolution , 2008, FEMS microbiology reviews.

[238]  M. Sudol,et al.  The importance of being proline: the interaction of proline‐rich motifs in signaling proteins with their cognate domains , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[239]  E. D. Cambronne,et al.  The Legionella pneumophila IcmSW Complex Interacts with Multiple Dot/Icm Effectors to Facilitate Type IV Translocation , 2007, PLoS pathogens.

[240]  R. Garrett,et al.  Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon , 1998, Extremophiles.

[241]  Wolfgang Fischer,et al.  A C‐terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein , 2006, Molecular microbiology.

[242]  R. Kahn,et al.  The Structure of RalF, an ADP-ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site* , 2005, Journal of Biological Chemistry.

[243]  M. Couturier,et al.  Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob , 2000, Molecular microbiology.

[244]  Hiroki Nagai,et al.  A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[245]  Fernando de la Cruz,et al.  The ATPase Activity of the DNA Transporter TrwB Is Modulated by Protein TrwA , 2007, Journal of Biological Chemistry.

[246]  R. Gutiérrez-Ríos,et al.  The repABC plasmid family. , 2008, Plasmid.

[247]  M. Lucas,et al.  Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. , 2006, Journal of molecular biology.

[248]  L. Frost,et al.  Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. , 2007, Microbiology.

[249]  C. Sasakawa,et al.  Structural definition on the surface of Helicobacter pylori type IV secretion apparatus , 2003, Cellular microbiology.

[250]  P. Christie,et al.  Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase , 1997, Journal of bacteriology.

[251]  A. Grossman,et al.  Identification and characterization of int (integrase), xis (excisionase) and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis , 2007, Molecular microbiology.

[252]  J. Schildbach,et al.  Roles of Active Site Residues and the HUH Motif of the F Plasmid TraI Relaxase* , 2007, Journal of Biological Chemistry.

[253]  F. de la Cruz,et al.  Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[254]  O. Dym,et al.  Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners , 2008, Proceedings of the National Academy of Sciences.

[255]  D. Zamboni,et al.  Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system , 2003, Molecular microbiology.

[256]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[257]  C. Schleper,et al.  A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating , 1995, Journal of bacteriology.

[258]  C. Parsot,et al.  Chaperones of the type III secretion pathway: jacks of all trades , 2002, Molecular microbiology.

[259]  K. Derbyshire,et al.  Unconventional conjugal DNA transfer in mycobacteria , 2003, Nature Genetics.

[260]  F. Hoppensteadt,et al.  Plasmid incompatibility. , 1978, Microbiological reviews.

[261]  C. Waters,et al.  The Aggregation Domain of Aggregation Substance, Not the RGD Motifs, Is Critical for Efficient Internalization by HT-29 Enterocytes , 2003, Infection and Immunity.

[262]  R. Haas,et al.  The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. , 2007, Microbiology.

[263]  J. Fletcher,et al.  Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii: implications for plasmid evolution , 2005, BMC Genomics.

[264]  M. Lucas,et al.  Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC , 2003, Nature Structural Biology.

[265]  Christopher D Thomas,et al.  Investigating the basis of substrate recognition in the pC221 relaxosome , 2006, Molecular microbiology.

[266]  E. Snyder,et al.  Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life , 2008, PloS one.

[267]  R. Lurz,et al.  The VirB4 Family of Proposed Traffic Nucleoside Triphosphatases: Common Motifs in Plasmid RP4 TrbE Are Essential for Conjugation and Phage Adsorption , 2003, Journal of bacteriology.

[268]  R. Haas,et al.  Natural competence for DNA transformation in Helicobacter pylori : identification and genetic characterization of the comB locus , 1998, Molecular microbiology.

[269]  L. Haren,et al.  Integrating DNA: transposases and retroviral integrases. , 1999, Annual review of microbiology.

[270]  C. Dehio,et al.  A bacterial conjugation machinery recruited for pathogenesis , 2003, Molecular microbiology.

[271]  C. Waters,et al.  Analysis of Functional Domains of theEnterococcus faecalis Pheromone-Induced Surface Protein Aggregation Substance , 2001, Journal of bacteriology.

[272]  J. Davies,et al.  Conjugative Junctions in RP4-Mediated Mating ofEscherichia coli , 2000, Journal of bacteriology.

[273]  J. Siefert,et al.  Defining the mobilome. , 2009, Methods in molecular biology.

[274]  A. Das,et al.  Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[275]  R. Lurz,et al.  Tying rings for sex. , 2002, Trends in microbiology.

[276]  Wolfgang Fischer,et al.  Type IV secretion systems in pathogenic bacteria. , 2002, International journal of medical microbiology : IJMM.

[277]  J. Cox,et al.  Protein secretion systems in Mycobacteria , 2007, Cellular microbiology.

[278]  A. Azad,et al.  Plasmids and Rickettsial Evolution: Insight from Rickettsia felis , 2007, PloS one.

[279]  G. Bonheyo,et al.  Transfer region of a bacteroides conjugative transposon, CTnDOT. , 2001, Plasmid.

[280]  C. Dehio,et al.  Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. , 2009, The international journal of biochemistry & cell biology.

[281]  G. Waksman,et al.  NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system , 2007, Proceedings of the National Academy of Sciences.

[282]  J. Lavigne,et al.  Type IV secretion and Brucella virulence. , 2002, Veterinary microbiology.

[283]  A. Vergunst,et al.  Recognition of the Agrobacterium tumefaciens VirE2 Translocation Signal by the VirB/D4 Transport System Does Not Require VirE11 , 2003, Plant Physiology.

[284]  D. Burns,et al.  Type IV transporters of pathogenic bacteria. , 2003, Current opinion in microbiology.

[285]  G. Lipps Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus , 2006, Extremophiles.

[286]  M. Solà,et al.  Coupling factors in macromolecular type-IV secretion machineries. , 2004, Current pharmaceutical design.

[287]  E. Cascales,et al.  Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. , 2004, Journal of molecular biology.

[288]  D. Clewell Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. , 2007, Plasmid.

[289]  G. Barroso,et al.  Chromosomal gene transfer in Spiroplasma citri. , 1988, Science.

[290]  A. Wang,et al.  Characterization of six linked open reading frames necessary for pIP501-mediated conjugation. , 1995, Plasmid.

[291]  E. Nester,et al.  The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer , 1989, Journal of bacteriology.

[292]  A. Kalia,et al.  A Dot/Icm‐translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa , 2008, Molecular microbiology.

[293]  P. Christie Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. , 2004, Biochimica et biophysica acta.

[294]  Jihun Kim,et al.  The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host–cell interaction genes , 2007, Proceedings of the National Academy of Sciences.

[295]  C. Drainas,et al.  Analysis of ColE1 MbeC Unveils an Extended Ribbon-Helix-Helix Family of Nicking Accessory Proteins , 2008, Journal of bacteriology.

[296]  P. Güntert,et al.  Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. , 2008, Journal of molecular biology.

[297]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[298]  Gary M. Dunny,et al.  Multiple Functional Domains of Enterococcus faecalis Aggregation Substance Asc10 Contribute to Endocarditis Virulence , 2008, Infection and Immunity.