Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic

Abstract Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel (Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light. Photoreceptor density, spacing, and Voronoi analysis are consistent with that of the human cone mosaic. The high imaging success rate and consistent image quality in this study reinforce the ground squirrel as a practical model to aid drug discovery and testing through longitudinal imaging on the cellular scale.

[1]  Jennifer J. Hunter,et al.  Imaging retinal mosaics in the living eye , 2011, Eye.

[2]  David R Williams,et al.  In vivo imaging of microscopic structures in the rat retina. , 2009, Investigative ophthalmology & visual science.

[3]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  David Williams,et al.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye , 2014, The Journal of Neuroscience.

[5]  Don H. Anderson,et al.  Rod photoreceptors and scotopic vision in ground squirrels , 1980, The Journal of comparative neurology.

[6]  S. DeVries,et al.  Organizational motifs for ground squirrel cone bipolar cells , 2012, The Journal of comparative neurology.

[7]  Gerald H Jacobs,et al.  Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. , 2003, Investigative ophthalmology & visual science.

[8]  A. P. Cullen,et al.  Spectral transmittance of the ocular media of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus) , 1984 .

[9]  G. H. Jacobs,et al.  Dichromacy in the Ground Squirrel , 1969, Nature.

[10]  J. Sahel,et al.  Cellular-resolution in vivo imaging of the feline retina using adaptive optics: preliminary results. , 2010, Veterinary ophthalmology.

[11]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[12]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[13]  Maureen Neitz,et al.  Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Phillip Bedggood,et al.  Limitations to adaptive optics image quality in rodent eyes , 2012, Biomedical optics express.

[15]  David R. Williams,et al.  Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy , 2010, Biomedical optics express.

[16]  M. McCourt,et al.  Refractive state, depth of focus and accommodation of the eye of the California ground squirrel (Spermophilus Beecheyi) , 1984, Vision Research.

[17]  S. DeVries,et al.  Separate blue and green cone networks in the mammalian retina , 2004, Nature Neuroscience.

[18]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[19]  Austin Roorda,et al.  Automated identification of cone photoreceptors in adaptive optics retinal images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  C. Curcio,et al.  Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. , 1992, Visual neuroscience.

[21]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[22]  L. Wündsch,et al.  Spectral sensitivity of the European ground squirrel (Citellus citellus L.). , 1984, Ophthalmic research.

[23]  Alfredo Dubra,et al.  Optical design of a broadband scanning adaptive optics ophthalmoscope for the mouse eye , 2014, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[24]  Garet P Lahvis,et al.  Current practices in a captive breeding colony of 13-lined ground squirrels (Ictidomys tridecemlineatus) , 2012, Lab Animal.

[25]  Ying Geng,et al.  Imaging light responses of retinal ganglion cells in the living mouse eye. , 2013, Journal of neurophysiology.

[26]  V. Lakshminarayanan,et al.  Eye model for the ground squirrel , 2011 .

[27]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[28]  E. Rossi,et al.  The relationship between visual resolution and cone spacing in the human fovea , 2009, Nature Neuroscience.

[29]  Peter K. Ahnelt,et al.  Characterization of the color related receptor mosaic in the ground squirrel retina , 1985, Vision Research.

[30]  Á. Szél,et al.  Expression of phototransduction cascade genes in the ground squirrel retina. , 1994, Investigative ophthalmology & visual science.

[31]  Stephen A Burns,et al.  In vivo fluorescent imaging of the mouse retina using adaptive optics. , 2007, Optics letters.

[32]  D. Williams,et al.  Imaging translucent cell bodies in the living mouse retina without contrast agents. , 2015, Biomedical optics express.

[33]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[34]  David Williams,et al.  Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. , 2013, Investigative ophthalmology & visual science.

[35]  Jennifer J. Hunter,et al.  Longitudinal In Vivo Imaging of Cones in the Alert Chicken , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[36]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  David R Williams,et al.  In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells. , 2008, Investigative ophthalmology & visual science.

[38]  Stephen D Van Hooser,et al.  The squirrel as a rodent model of the human visual system , 2006, Visual Neuroscience.

[39]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[40]  David R Williams,et al.  In vivo two-photon imaging of the mouse retina. , 2012, Biomedical optics express.

[41]  Stacey S. Choi,et al.  Measurement of the photoreceptor pointing in the living chick eye , 2015, Vision Research.

[42]  J. Sivak,et al.  Refractive State of the Eye of a Small Diurnal Mammal: The Ground Squirrel , 1979, American journal of optometry and physiological optics.

[43]  Jessica I. W. Morgan,et al.  Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin , 2009, Proceedings of the National Academy of Sciences.

[44]  Mayank Goswami,et al.  Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. , 2015, Biomedical Optics Express.

[45]  S. Fisher,et al.  The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi , 1983, The Journal of comparative neurology.

[46]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[47]  David Williams,et al.  Adaptive optics retinal imaging in the living mouse eye , 2012, Biomedical optics express.