Numerical assessment in aeronautics for electromagnetic environmental effects

Electromagnetic Compatibility for Space Systems Design is a critical scholarly resource that examines the applications of electromagnetic compatibility and electromagnetic interference in the space industry. Featuring coverage on a wide range of topics, such as magnetometers, electromagnetic environmental effects, and electromagnetic shielding, this book is geared toward managers, engineers, and researchers seeking current research on the applications of electromagnetic technologies in the aerospace field

[1]  Ashok K. Agrawal,et al.  Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field , 1980 .

[2]  S. F. Romero,et al.  Validation procedure of low level coupling tests on real aircraft structure , 2012, International Symposium on Electromagnetic Compatibility - EMC EUROPE.

[3]  S. Tretyakov,et al.  Higher order impedance boundary conditions for sparse wire grids , 2000 .

[4]  Edward K. N. Yung,et al.  The unconditionally stable Crank Nicolson FDTD method for three-dimensional Maxwell's equations , 2006 .

[5]  A. Orlandi,et al.  Feature selective validation (FSV) for validation of computational electromagnetics (CEM). part II- assessment of FSV performance , 2006, IEEE Transactions on Electromagnetic Compatibility.

[6]  Marc Pous,et al.  SIVA UAV: A Case Study for the EMC Analysis of Composite Air Vehicles , 2017, IEEE Transactions on Electromagnetic Compatibility.

[7]  M. Feliziani,et al.  Full-wave analysis of shielded cable configurations by the FDTD method , 2002 .

[8]  Vahid Nayyeri,et al.  Modeling Graphene in the Finite-Difference Time-Domain Method Using a Surface Boundary Condition , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Richard Holland,et al.  Finite-Difference Analysis of EMP Coupling to Thin Struts and Wires , 1981, IEEE Transactions on Electromagnetic Compatibility.

[10]  Farhad Rachidi,et al.  A Review of Field-to-Transmission Line Coupling Models With Special Emphasis to Lightning-Induced Voltages on Overhead Lines , 2012, IEEE Transactions on Electromagnetic Compatibility.

[11]  F. Moglie,et al.  FDTD analysis of plane wave superposition to simulate susceptibility tests in reverberation chambers , 2006, IEEE Transactions on Electromagnetic Compatibility.

[12]  S. Garcia,et al.  Bipml: a pml to match waves in bianisotropic media , 1999 .

[13]  Frederik Edelvik,et al.  Hybrid Solvers for the Maxwell Equations in Time-Domain , 2002 .

[14]  Marc Pous,et al.  Use of reference limits in the Feature Selective Validation (FSV) method , 2014, 2014 International Symposium on Electromagnetic Compatibility.

[15]  Guido A. Rasek,et al.  HIRF Transfer Function Observations: Notes on Results Versus Requirements and Certification Approach , 2015, IEEE Transactions on Electromagnetic Compatibility.

[16]  Enrique Pascual-Gil,et al.  On the Design of Aircraft Electrical Structure Networks , 2016, IEEE Transactions on Electromagnetic Compatibility.

[17]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[18]  Thin-Slot/Thin-Layer Subcell FDTD Algorithms for EM Penetration through Apertures , 2003 .

[19]  M. Meyer,et al.  Modeling of lightning indirect effects in CFRP Aircraft , 2008, 2008 International Symposium on Electromagnetic Compatibility - EMC Europe.

[20]  R. G. Rubio,et al.  Revisiting the Stability of Crank–Nicolson and ADI-FDTD , 2007, IEEE Transactions on Antennas and Propagation.

[21]  Gregory Kobidze Implementation of Collocated Surface Impedance Boundary Conditions in FDTD , 2010, IEEE Transactions on Antennas and Propagation.

[22]  K. Kunz,et al.  Low frequency shielding effects of a conducting shell with an aperture: response of an internal wire , 1992 .

[23]  K. Yee,et al.  A subgridding method for the time-domain finite-difference method to solve Maxwell's equations , 1991 .

[24]  A. Reineix,et al.  New Oblique Thin Wire Formalism in the FDTD Method With Multiwire Junctions , 2012, IEEE Transactions on Antennas and Propagation.

[25]  F. Silva,et al.  The Role of Uncertainty in the Feature Selective Validation (FSV) Method , 2013, IEEE Transactions on Electromagnetic Compatibility.

[26]  John B. Schneider,et al.  Understanding the Finite-Difference Time-Domain Method , 2011 .

[27]  R. Mittra,et al.  A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects , 1997 .

[28]  A. Orlandi,et al.  Feature selective validation (FSV) for validation of computational electromagnetics (CEM). part I-the FSV method , 2006, IEEE Transactions on Electromagnetic Compatibility.

[29]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[30]  I. Flintoft,et al.  A Hybrid Crank–Nicolson FDTD Subgridding Boundary Condition for Lossy Thin-Layer Modeling , 2017, IEEE Transactions on Microwave Theory and Techniques.

[31]  G. Lazzi,et al.  Use of the FDTD thin-strut formalism for biomedical telemetry coil designs , 2004, IEEE Transactions on Microwave Theory and Techniques.

[32]  M. S. Sarto,et al.  A new model for the FDTD analysis of the shielding performances of thin composite structures , 1999 .

[33]  W.A. Radasky,et al.  Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI) , 2004, IEEE Transactions on Electromagnetic Compatibility.

[34]  David A. Hill,et al.  Electromagnetic Fields in Cavities , 2009 .

[35]  Gang Zhang,et al.  Analyzing Transient Phenomena in the Time Domain Using the Feature Selective Validation (FSV) Method , 2014, IEEE Transactions on Electromagnetic Compatibility.

[36]  D. Hill Plane wave integral representation for fields in reverberation chambers , 1998 .

[37]  J. Bérenger A multiwire formalism for the FDTD method , 2000 .

[38]  Guido A. Rasek,et al.  Analysis of High Intensity Radiated Field Coupling into Aircraft Using the Method of Moments , 2014, IEEE Transactions on Electromagnetic Compatibility.

[39]  Edward Vance,et al.  Shielding Effectiveness of Braided-Wire Shields , 1975, IEEE Transactions on Electromagnetic Compatibility.

[40]  G.A. Rasek,et al.  Correlation of Direct Current Injection (DCI) and Free-Field Illumination for HIRF Certification , 2008, IEEE Transactions on Electromagnetic Compatibility.

[41]  B. Gustavsen,et al.  Improving the pole relocating properties of vector fitting , 2006, 2006 IEEE Power Engineering Society General Meeting.

[42]  M. S. Sarto,et al.  Shielding Effectiveness of Protective Metallic Wire Meshes: EM Modeling and Validation , 2014, IEEE Transactions on Electromagnetic Compatibility.

[43]  A novel subgriding scheme for arbitrarily dispersive thin-layer modeling , 2017, 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO).

[44]  Wolfgang Fichtner,et al.  Review of FDTD time-stepping schemes for efficient simulation of electric conductive media , 2000 .

[45]  Shanhui Fan,et al.  Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs , 2006, IEEE Microwave and Wireless Components Letters.

[46]  Wenhua. Wenhua Yu ... . Yu,et al.  Parallel Finite-Difference Time-Domain Method , 2006 .

[47]  S. Garcia,et al.  A New Efficient and Stable 3D Conformal FDTD , 2016, IEEE Microwave and Wireless Components Letters.