Nanosensors lost in space. A random walk study of single molecule detection with single-nanopore sensors.

[1]  Boris Rotman,et al.  MEASUREMENT OF ACTIVITY OF SINGLE MOLECULES OF β-D-GALACTOSIDASE , 1961 .

[2]  C. P. Bean,et al.  Counting and Sizing of Submicron Particles by the Resistive Pulse Technique , 1970 .

[3]  T. Hirschfeld Optical microscopic observation of single small molecules. , 1976, Applied optics.

[4]  Henry A. Erlich,et al.  Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes , 1986, Nature.

[5]  T. Thundat,et al.  Images of the DNA double helix in water. , 1989, Science.

[6]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[7]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[8]  A. Bard,et al.  Electrochemical Detection of Single Molecules , 1995, Science.

[9]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[10]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[11]  In vitro method for the generation of protein libraries using PCR amplification of a single DNA molecule and coupled transcription/translation. , 1998, Nucleic acids research.

[12]  Y. Jia,et al.  Folding dynamics of single GCN-4 peptides by fluorescence resonant energy transfer confocal microscopy , 1999 .

[13]  K. Jirage,et al.  Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. , 1999, Analytical chemistry.

[14]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[15]  A. Jayakumar,et al.  Exact analytical solution for current flow through diode with series resistance , 2000 .

[16]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[17]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[18]  S. Howorka,et al.  Kinetics of duplex formation for individual DNA strands within a single protein nanopore , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[20]  C. Martin,et al.  pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. , 2001, Analytical chemistry.

[21]  P. Stroeve,et al.  External Control of Ion Transport in Nanoporous Membranes with Surfaces Modified with Self-Assembled Monolayers , 2001 .

[22]  C. R. Martin,et al.  Ion channel mimetic micropore and nanotube membrane sensors. , 2002, Analytical chemistry.

[23]  E. Stellwagen,et al.  Unified description of electrophoresis and diffusion for DNA and other polyions. , 2003, Biochemistry.

[24]  Ernö Pretsch,et al.  Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. , 2003, Chemical communications.

[25]  C. R. Martin,et al.  Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy. , 2004, Analytical chemistry.

[26]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[27]  Ryan J. White,et al.  A random walk through electron-transfer kinetics. , 2005, Analytical chemistry.

[28]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[29]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[30]  D. Lawler,et al.  Characteristics of Zeta Potential Distribution in Silica Particles , 2005 .

[31]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  Kevin Ke,et al.  Submicrometer pore-based characterization and quantification of antibody-virus interactions. , 2006, Small.

[33]  Ernö Pretsch,et al.  Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. , 2007, Nano letters.

[34]  Gregory W. Bishop,et al.  Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. , 2007, Journal of the American Chemical Society.

[35]  Z. Schuss,et al.  The narrow escape problem for diffusion in cellular microdomains , 2007, Proceedings of the National Academy of Sciences.

[36]  G. Timp,et al.  Detecting SNPs using a synthetic nanopore. , 2007, Nano letters.

[37]  H. Mehrer Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes , 2007 .

[38]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[39]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[40]  Li-Qun Gu,et al.  Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. , 2009, Analytical chemistry.

[41]  L. Gu,et al.  Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. , 2009, Analytical chemistry.

[42]  R. Tampé,et al.  Multiplexed parallel single transport recordings on nanopore arrays. , 2010, Nano letters.

[43]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[44]  J. Giérak,et al.  Dynamics of colloids in single solid-state nanopores. , 2011, The journal of physical chemistry. B.

[45]  R. E. Gyurcsányi,et al.  Solid-state ion channels for potentiometric sensing. , 2011, Angewandte Chemie.

[46]  Matthew B. Kerby,et al.  Landscape of next-generation sequencing technologies. , 2011, Analytical chemistry.