Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization

We show that, for some Newton-type methods such as primal-dual interior-point path following methods and Chen-Mangasarian smoothing methods, local superlinear convergence can be shown without assuming the solutions are isolated. The analysis is based on local error bounds on the distance from the iterates to the solution set.

[1]  G. Mitra Variational Inequalities and Complementarity Problems — Theory and Application , 1980 .

[2]  Nimrod Megiddo,et al.  Homotopy Continuation Methods for Nonlinear Complementarity Problems , 1991, Math. Oper. Res..

[3]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[4]  P. Tseng Global linear convergence of a path-following algorithm for some monotone variational inequality problems , 1992 .

[5]  G. Isac Complementarity Problems , 1992 .

[6]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[7]  Shinji Mizuno,et al.  A General Framework of Continuation Methods for Complementarity Problems , 1993, Math. Oper. Res..

[8]  Z.-Q. Luo,et al.  Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..

[9]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[10]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[11]  Masakazu Kojima,et al.  Global convergence in infeasible-interior-point algorithms , 1994, Math. Program..

[12]  SIMPLIFIED ANALYSIS OF AN O(nL)-ITERATION INFEASIBLE PREDICTOR-CORRECTOR PATH-FOLLOWING METHOD FOR MONOTONE LINEAR COMPLEMENTARITY PROBLEMS , 1995 .

[13]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[14]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[15]  Ravi P. Agarwal,et al.  Recent trends in optimization theory and applications , 1995 .

[16]  P. Tseng On linear convergence of iterative methods for the variational inequality problem , 1995 .

[17]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[18]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[19]  Y. Ye,et al.  Interior-point methods for nonlinear complementarity problems , 1996 .

[20]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[21]  Stephen J. Wright,et al.  A superlinear infeasible-interior-point algorithm for monotone complementarity problems , 1996 .

[22]  Stephen J. Wright,et al.  Superlinear convergence of an interior-point method for monotone variational inequalities , 1996 .

[23]  M. Fukushima,et al.  Equivalence of the generalized complementarity problem to differentiable unconstrained minimization , 1996 .

[24]  Xiaojun ChenyMay A Global and Local Superlinear Continuation-Smoothing Method for P0 +R0 and Monotone NCP , 1997 .

[25]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[26]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[27]  Renato D. C. Monteiro,et al.  On Superlinear Convergence of Infeasible Interior-Point Algorithms for Linearly Constrained Convex Programs , 1997, Comput. Optim. Appl..

[28]  Paul Tseng,et al.  An Infeasible Path-Following Method for Monotone Complementarity Problems , 1997, SIAM J. Optim..

[29]  Tamás Terlaky,et al.  Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems , 1997, Math. Program..

[30]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[31]  Jie Sun,et al.  Global Linear and Local Quadratic Convergence of a Long-Step Adaptive-Mode Interior Point Method for Some Monotone Variational Inequality Problems , 1998, SIAM J. Optim..

[32]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[33]  P. Tseng Analysis Of A Non-Interior Continuation Method Based On Chen-Mangasarian Smoothing Functions For Com , 1998 .

[34]  J. Burke,et al.  A Non-Interior Predictor-Corrector Path-Following Method for LCP , 1998 .

[35]  Bintong Chen,et al.  A Global Linear and Local Quadratic Noninterior Continuation Method for Nonlinear Complementarity Problems Based on Chen-Mangasarian Smoothing Functions , 1999, SIAM J. Optim..

[36]  Song Xu,et al.  A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem , 2000, Math. Program..

[37]  Xiaojun Chen,et al.  A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints , 2000, Comput. Optim. Appl..

[38]  Keisuke Hotta,et al.  A Complexity Analysis of a Smoothing Method Using CHKS-functions for Monotone Linear Complementarity Problems , 2000, Comput. Optim. Appl..

[39]  Stephen J. Wright,et al.  Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints , 2000, Math. Oper. Res..