Unsupervised Joint k-node Graph Representations with Compositional Energy-Based Models

Existing Graph Neural Network (GNN) methods that learn inductive unsupervised graph representations focus on learning node and edge representations by predicting observed edges in the graph. Although such approaches have shown advances in downstream node classification tasks, they are ineffective in jointly representing larger $k$-node sets, $k{>}2$. We propose MHM-GNN, an inductive unsupervised graph representation approach that combines joint $k$-node representations with energy-based models (hypergraph Markov networks) and GNNs. To address the intractability of the loss that arises from this combination, we endow our optimization with a loss upper bound using a finite-sample unbiased Markov Chain Monte Carlo estimator. Our experiments show that the unsupervised MHM-GNN representations of MHM-GNN produce better unsupervised representations than existing approaches from the literature.

[1]  Vinayak A. Rao,et al.  Relational Pooling for Graph Representations , 2019, ICML.

[2]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[3]  Jian Tang,et al.  InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization , 2019, ICLR.

[4]  Ryan A. Rossi,et al.  A Structural Graph Representation Learning Framework , 2020, WSDM.

[5]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[6]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1989, 30th Annual Symposium on Foundations of Computer Science.

[7]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[8]  A. Rinaldo,et al.  Random networks, graphical models and exchangeability , 2017, 1701.08420.

[9]  Robert Tibshirani,et al.  Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods , 2009, J. Mach. Learn. Res..

[10]  Niloy Ganguly,et al.  NeVAE: A Deep Generative Model for Molecular Graphs , 2018, AAAI.

[11]  Balasubramaniam Srinivasan,et al.  On the Equivalence between Positional Node Embeddings and Structural Graph Representations , 2019, ICLR.

[12]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[14]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[16]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[17]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[18]  Yee Whye Teh,et al.  Energy-Based Models for Sparse Overcomplete Representations , 2003, J. Mach. Learn. Res..

[19]  M. Narasimha Murty,et al.  Negative Sampling for Hyperlink Prediction in Networks , 2020, PAKDD.

[20]  Mengting Wan,et al.  Decomposing fit semantics for product size recommendation in metric spaces , 2018, RecSys.

[21]  Christopher Morris,et al.  Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings , 2020, NeurIPS.

[22]  Emmanuel Müller,et al.  NetLSD: Hearing the Shape of a Graph , 2018, KDD.

[23]  Partha Pratim Talukdar,et al.  HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs , 2018 .

[24]  Stephan Günnemann,et al.  Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking , 2017, ICLR.

[25]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[26]  Bruno Ribeiro,et al.  Subgraph Pattern Neural Networks for High-Order Graph Evolution Prediction , 2018, AAAI.

[27]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[28]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[29]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[30]  Adrian Weller,et al.  Uprooting and Rerooting Higher-Order Graphical Models , 2017, NIPS.

[31]  Konstantin Avrachenkov,et al.  Inference in OSNs via Lightweight Partial Crawls , 2016, SIGMETRICS.

[32]  Song Bai,et al.  Hypergraph Convolution and Hypergraph Attention , 2019, Pattern Recognit..

[33]  Ryan A. Rossi,et al.  Graph Convolutional Networks with Motif-based Attention , 2019, CIKM.

[34]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data , 2009 .

[35]  Donald F. Towsley,et al.  Efficiently Estimating Motif Statistics of Large Networks , 2013, TKDD.

[36]  Myle Ott,et al.  Energy-Based Models for Text , 2020, ArXiv.

[37]  Ravi Kumar,et al.  Counting Graphlets: Space vs Time , 2017, WSDM.

[38]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[39]  Yixin Chen,et al.  Recovering Metabolic Networks using A Novel Hyperlink Prediction Method , 2016, ArXiv.

[40]  Klaus Nordhausen,et al.  Statistical Analysis of Network Data with R , 2015 .

[41]  Ye Xu,et al.  Hyperlink Prediction in Hypernetworks Using Latent Social Features , 2013, Discovery Science.

[42]  Lina Yao,et al.  Adversarially Regularized Graph Autoencoder , 2018, IJCAI.

[43]  Yue Gao,et al.  Hypergraph Neural Networks , 2018, AAAI.

[44]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[45]  Ryan A. Rossi,et al.  Deep Inductive Network Representation Learning , 2018, WWW.

[46]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[47]  Yang Liu,et al.  graph2vec: Learning Distributed Representations of Graphs , 2017, ArXiv.

[48]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[49]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[50]  Soon-Jo Chung,et al.  Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Bruno Ribeiro,et al.  Graph Pattern Mining and Learning through User-Defined Relations , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[52]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[53]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[54]  Yung Yi,et al.  How Much and When Do We Need Higher-order Information in Hypergraphs? A Case Study on Hyperedge Prediction , 2020, WWW.

[55]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[56]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[57]  Yisong Yue,et al.  Learning for Safety-Critical Control with Control Barrier Functions , 2019, L4DC.

[58]  Niloy Ganguly,et al.  Designing Random Graph Models Using Variational Autoencoders With Applications to Chemical Design , 2018, ArXiv.

[59]  Martin Grohe,et al.  Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks , 2018, AAAI.

[60]  Jan Eric Lenssen,et al.  Fast Graph Representation Learning with PyTorch Geometric , 2019, ArXiv.

[61]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[62]  Yixin Chen,et al.  Beyond Link Prediction: Predicting Hyperlinks in Adjacency Space , 2018, AAAI.

[63]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.

[64]  Yaron Lipman,et al.  Invariant and Equivariant Graph Networks , 2018, ICLR.

[65]  Jon M. Kleinberg,et al.  Simplicial closure and higher-order link prediction , 2018, Proceedings of the National Academy of Sciences.

[66]  Pietro Liò,et al.  Deep Graph Infomax , 2018, ICLR.

[67]  E. Todeva Networks , 2007 .

[68]  Geoffrey E. Hinton,et al.  Implicit Mixtures of Restricted Boltzmann Machines , 2008, NIPS.

[69]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[70]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[71]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[72]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data with R , 2020, Use R!.

[73]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[74]  Julian J. McAuley,et al.  Generating and Personalizing Bundle Recommendations on Steam , 2017, SIGIR.